/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.lops; import org.apache.sysml.lops.LopProperties.ExecLocation; import org.apache.sysml.lops.LopProperties.ExecType; import org.apache.sysml.lops.compile.JobType; import org.apache.sysml.parser.Expression.DataType; import org.apache.sysml.parser.Expression.ValueType; /** * Lop to compute covariance between two 1D matrices * */ public class CoVariance extends Lop { public CoVariance(Lop input1, DataType dt, ValueType vt, ExecType et) throws LopsException { super(Lop.Type.CoVariance, dt, vt); init(input1, null, null, et); } public CoVariance(Lop input1, Lop input2, DataType dt, ValueType vt, ExecType et) throws LopsException { this(input1, input2, null, dt, vt, et); } public CoVariance(Lop input1, Lop input2, Lop input3, DataType dt, ValueType vt, ExecType et) throws LopsException { super(Lop.Type.CoVariance, dt, vt); init(input1, input2, input3, et); } private void init(Lop input1, Lop input2, Lop input3, ExecType et) throws LopsException { /* * When et = MR: covariance lop will have a single input lop, which * denote the combined input data -- output of combinebinary, if unweighed; * and output combineteriaty (if weighted). * * When et = CP: covariance lop must have at least two input lops, which * denote the two input columns on which covariance is computed. It also * takes an optional third arguments, when weighted covariance is computed. */ addInput(input1); input1.addOutput(this); boolean breaksAlignment = false; boolean aligner = false; boolean definesMRJob = true; if ( et == ExecType.MR ) { lps.addCompatibility(JobType.CM_COV); lps.setProperties(inputs, et, ExecLocation.MapAndReduce, breaksAlignment, aligner, definesMRJob); } else //CP/SPARK { definesMRJob = false; if ( input2 == null ) { throw new LopsException(this.printErrorLocation() + "Invalid inputs to covariance lop."); } addInput(input2); input2.addOutput(this); if ( input3 != null ) { addInput(input3); input3.addOutput(this); } lps.addCompatibility(JobType.INVALID); lps.setProperties(inputs, et, ExecLocation.ControlProgram, breaksAlignment, aligner, definesMRJob); } } @Override public String toString() { return "Operation = coVariance"; } /** * Function two generate CP instruction to compute unweighted covariance. * input1 -> input column 1 * input2 -> input column 2 */ @Override public String getInstructions(String input1, String input2, String output) { return getInstructions(input1, input2, null, output); } /** * Function two generate CP instruction to compute weighted covariance. * input1 -> input column 1 * input2 -> input column 2 * input3 -> weights */ @Override public String getInstructions(String input1, String input2, String input3, String output) { StringBuilder sb = new StringBuilder(); sb.append( getExecType() ); sb.append( Lop.OPERAND_DELIMITOR ); sb.append( "cov" ); sb.append( OPERAND_DELIMITOR ); sb.append( getInputs().get(0).prepInputOperand(input1)); sb.append( OPERAND_DELIMITOR ); if( input2 != null ) { sb.append( getInputs().get(1).prepInputOperand(input2)); sb.append( OPERAND_DELIMITOR ); } if( input3 != null ) { sb.append( getInputs().get(2).prepInputOperand(input3)); sb.append( OPERAND_DELIMITOR ); } sb.append( prepOutputOperand(output)); return sb.toString(); } /** * Function to generate MR version of covariance instruction. * input_index -> denote the "combined" input columns and weights, * when applicable. */ @Override public String getInstructions(int input_index, int output_index) { return getInstructions(String.valueOf(input_index), null, null, String.valueOf(output_index)); } }