/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with this * work for additional information regarding copyright ownership. The ASF * licenses this file to You under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law * or agreed to in writing, software distributed under the License is * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the specific language * governing permissions and limitations under the License. */ package org.apache.commons.math4.userguide.filter; import java.awt.Color; import java.awt.Component; import java.awt.Font; import java.util.ArrayList; import java.util.List; import javax.swing.BorderFactory; import javax.swing.BoxLayout; import javax.swing.JComponent; import javax.swing.JPanel; import org.apache.commons.rng.UniformRandomProvider; import org.apache.commons.rng.simple.RandomSource; import org.apache.commons.math4.filter.DefaultMeasurementModel; import org.apache.commons.math4.filter.DefaultProcessModel; import org.apache.commons.math4.filter.KalmanFilter; import org.apache.commons.math4.filter.MeasurementModel; import org.apache.commons.math4.filter.ProcessModel; import org.apache.commons.math4.linear.MatrixUtils; import org.apache.commons.math4.linear.RealMatrix; import org.apache.commons.math4.linear.RealVector; import org.apache.commons.math4.random.GaussianRandomGenerator; import org.apache.commons.math4.util.FastMath; import org.apache.commons.math4.userguide.ExampleUtils; import org.apache.commons.math4.userguide.ExampleUtils.ExampleFrame; import com.xeiam.xchart.Chart; import com.xeiam.xchart.ChartBuilder; import com.xeiam.xchart.Series; import com.xeiam.xchart.SeriesLineStyle; import com.xeiam.xchart.SeriesMarker; import com.xeiam.xchart.XChartPanel; import com.xeiam.xchart.StyleManager.ChartType; import com.xeiam.xchart.StyleManager.LegendPosition; public class CannonballExample { public static class Cannonball { private final double[] gravity = { 0, -9.81 }; private final double[] velocity; private final double[] location; private final double timeslice; private final double measurementNoise; private final GaussianRandomGenerator rng; public Cannonball(double timeslice, double angle, double initialVelocity, double measurementNoise, int seed) { this.timeslice = timeslice; final double angleInRadians = FastMath.toRadians(angle); this.velocity = new double[] { initialVelocity * FastMath.cos(angleInRadians), initialVelocity * FastMath.sin(angleInRadians) }; this.location = new double[] { 0, 0 }; this.measurementNoise = measurementNoise; this.rng = new GaussianRandomGenerator(RandomSource.create(RandomSource.WELL_19937_C, seed)); } public double getX() { return location[0]; } public double getY() { return location[1]; } public double getMeasuredX() { return location[0] + rng.nextNormalizedDouble() * measurementNoise; } public double getMeasuredY() { return location[1] + rng.nextNormalizedDouble() * measurementNoise; } public double getXVelocity() { return velocity[0]; } public double getYVelocity() { return velocity[1]; } public void step() { // Break gravitational force into a smaller time slice. double[] slicedGravity = gravity.clone(); for ( int i = 0; i < slicedGravity.length; i++ ) { slicedGravity[i] *= timeslice; } // Apply the acceleration to velocity. double[] slicedVelocity = velocity.clone(); for ( int i = 0; i < velocity.length; i++ ) { velocity[i] += slicedGravity[i]; slicedVelocity[i] = velocity[i] * timeslice; location[i] += slicedVelocity[i]; } // Cannonballs shouldn't go into the ground. if ( location[1] < 0 ) { location[1] = 0; } } } public static void cannonballTest(Chart chart) { // time interval for each iteration final double dt = 0.1; // the number of iterations to run final int iterations = 144; // measurement noise (m) final double measurementNoise = 30; // initial velocity of the cannonball final double initialVelocity = 100; // shooting angle final double angle = 45; // the cannonball itself final Cannonball cannonball = new Cannonball(dt, angle, initialVelocity, measurementNoise, 1000); // A = [ 1, dt, 0, 0 ] => x(n+1) = x(n) + vx(n) // [ 0, 1, 0, 0 ] => vx(n+1) = vx(n) // [ 0, 0, 1, dt ] => y(n+1) = y(n) + vy(n) // [ 0, 0, 0, 1 ] => vy(n+1) = vy(n) final RealMatrix A = MatrixUtils.createRealMatrix(new double[][] { { 1, dt, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, dt }, { 0, 0, 0, 1 } }); // The control vector, which adds acceleration to the kinematic equations. // 0 => x(n+1) = x(n+1) // 0 => vx(n+1) = vx(n+1) // -9.81*dt^2 => y(n+1) = y(n+1) - 1/2 * 9.81 * dt^2 // -9.81*dt => vy(n+1) = vy(n+1) - 9.81 * dt final RealVector controlVector = MatrixUtils.createRealVector(new double[] { 0, 0, 0.5 * -9.81 * dt * dt, -9.81 * dt } ); // The control matrix B only update y and vy, see control vector final RealMatrix B = MatrixUtils.createRealMatrix(new double[][] { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 } }); // After state transition and control, here are the equations: // // x(n+1) = x(n) + vx(n) // vx(n+1) = vx(n) // y(n+1) = y(n) + vy(n) - 0.5 * 9.81 * dt^2 // vy(n+1) = vy(n) + -9.81 * dt // // Which, if you recall, are the equations of motion for a parabola. // We only observe the x/y position of the cannonball final RealMatrix H = MatrixUtils.createRealMatrix(new double[][] { { 1, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 0 } }); // This is our guess of the initial state. I intentionally set the Y value // wrong to illustrate how fast the Kalman filter will pick up on that. final double speedX = cannonball.getXVelocity(); final double speedY = cannonball.getYVelocity(); final RealVector initialState = MatrixUtils.createRealVector(new double[] { 0, speedX, 100, speedY } ); // The initial error covariance matrix, the variance = noise^2 final double var = measurementNoise * measurementNoise; final RealMatrix initialErrorCovariance = MatrixUtils.createRealMatrix(new double[][] { { var, 0, 0, 0 }, { 0, 1e-3, 0, 0 }, { 0, 0, var, 0 }, { 0, 0, 0, 1e-3 } }); // we assume no process noise -> zero matrix final RealMatrix Q = MatrixUtils.createRealMatrix(4, 4); // the measurement covariance matrix final RealMatrix R = MatrixUtils.createRealMatrix(new double[][] { { var, 0, 0, 0 }, { 0, 1e-3, 0, 0 }, { 0, 0, var, 0 }, { 0, 0, 0, 1e-3 } }); final ProcessModel pm = new DefaultProcessModel(A, B, Q, initialState, initialErrorCovariance); final MeasurementModel mm = new DefaultMeasurementModel(H, R); final KalmanFilter filter = new KalmanFilter(pm, mm); final List<Number> realX = new ArrayList<Number>(); final List<Number> realY = new ArrayList<Number>(); final List<Number> measuredX = new ArrayList<Number>(); final List<Number> measuredY = new ArrayList<Number>(); final List<Number> kalmanX = new ArrayList<Number>(); final List<Number> kalmanY = new ArrayList<Number>(); for (int i = 0; i < iterations; i++) { // get real location realX.add(cannonball.getX()); realY.add(cannonball.getY()); // get measured location final double mx = cannonball.getMeasuredX(); final double my = cannonball.getMeasuredY(); measuredX.add(mx); measuredY.add(my); // iterate the cannon simulation to the next timeslice. cannonball.step(); final double[] state = filter.getStateEstimation(); kalmanX.add(state[0]); kalmanY.add(state[2]); // update the kalman filter with the measurements filter.predict(controlVector); filter.correct(new double[] { mx, 0, my, 0 } ); } chart.setXAxisTitle("Distance (m)"); chart.setYAxisTitle("Height (m)"); Series dataset = chart.addSeries("true", realX, realY); dataset.setMarker(SeriesMarker.NONE); dataset = chart.addSeries("measured", measuredX, measuredY); dataset.setLineStyle(SeriesLineStyle.DOT_DOT); dataset.setMarker(SeriesMarker.NONE); dataset = chart.addSeries("kalman", kalmanX, kalmanY); dataset.setLineColor(Color.red); dataset.setLineStyle(SeriesLineStyle.DASH_DASH); dataset.setMarker(SeriesMarker.NONE); } public static Chart createChart(String title, LegendPosition position) { Chart chart = new ChartBuilder().width(650).height(450).build(); // Customize Chart chart.setChartTitle(title); chart.getStyleManager().setChartTitleVisible(true); chart.getStyleManager().setChartTitleFont(new Font("Arial", Font.PLAIN, 12)); chart.getStyleManager().setLegendPosition(position); chart.getStyleManager().setLegendVisible(true); chart.getStyleManager().setLegendFont(new Font("Arial", Font.PLAIN, 12)); chart.getStyleManager().setLegendPadding(6); chart.getStyleManager().setLegendSeriesLineLength(10); chart.getStyleManager().setAxisTickLabelsFont(new Font("Arial", Font.PLAIN, 10)); chart.getStyleManager().setChartBackgroundColor(Color.white); chart.getStyleManager().setChartPadding(4); chart.getStyleManager().setChartType(ChartType.Line); return chart; } public static JComponent createComponent() { JComponent container = new JPanel(); container.setLayout(new BoxLayout(container, BoxLayout.PAGE_AXIS)); Chart chart = createChart("Cannonball", LegendPosition.InsideNE); cannonballTest(chart); container.add(new XChartPanel(chart)); container.setBorder(BorderFactory.createLineBorder(Color.black, 1)); return container; } @SuppressWarnings("serial") public static class Display extends ExampleFrame { private JComponent container; public Display() { setTitle("Commons Math: Kalman Filter - Cannonball"); setSize(800, 600); container = new JPanel(); JComponent comp = createComponent(); container.add(comp); add(container); } @Override public Component getMainPanel() { return container; } } public static void main(String[] args) { ExampleUtils.showExampleFrame(new Display()); } }