/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math4.analysis.interpolation; import org.apache.commons.math4.analysis.UnivariateFunction; import org.apache.commons.math4.analysis.function.Expm1; import org.apache.commons.math4.analysis.function.Sin; import org.apache.commons.math4.analysis.interpolation.NevilleInterpolator; import org.apache.commons.math4.analysis.interpolation.UnivariateInterpolator; import org.apache.commons.math4.exception.NonMonotonicSequenceException; import org.apache.commons.math4.util.FastMath; import org.junit.Assert; import org.junit.Test; /** * Test case for Neville interpolator. * <p> * The error of polynomial interpolation is * f(z) - p(z) = f^(n)(zeta) * (z-x[0])(z-x[1])...(z-x[n-1]) / n! * where f^(n) is the n-th derivative of the approximated function and * zeta is some point in the interval determined by x[] and z. * <p> * Since zeta is unknown, f^(n)(zeta) cannot be calculated. But we can bound * it and use the absolute value upper bound for estimates. For reference, * see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X, chapter 2. * */ public final class NevilleInterpolatorTest { /** * Test of interpolator for the sine function. * <p> * |sin^(n)(zeta)| <= 1.0, zeta in [0, 2*PI] */ @Test public void testSinFunction() { UnivariateFunction f = new Sin(); UnivariateInterpolator interpolator = new NevilleInterpolator(); double x[], y[], z, expected, result, tolerance; // 6 interpolating points on interval [0, 2*PI] int n = 6; double min = 0.0, max = 2 * FastMath.PI; x = new double[n]; y = new double[n]; for (int i = 0; i < n; i++) { x[i] = min + i * (max - min) / n; y[i] = f.value(x[i]); } double derivativebound = 1.0; UnivariateFunction p = interpolator.interpolate(x, y); z = FastMath.PI / 4; expected = f.value(z); result = p.value(z); tolerance = FastMath.abs(derivativebound * partialerror(x, z)); Assert.assertEquals(expected, result, tolerance); z = FastMath.PI * 1.5; expected = f.value(z); result = p.value(z); tolerance = FastMath.abs(derivativebound * partialerror(x, z)); Assert.assertEquals(expected, result, tolerance); } /** * Test of interpolator for the exponential function. * <p> * |expm1^(n)(zeta)| <= e, zeta in [-1, 1] */ @Test public void testExpm1Function() { UnivariateFunction f = new Expm1(); UnivariateInterpolator interpolator = new NevilleInterpolator(); double x[], y[], z, expected, result, tolerance; // 5 interpolating points on interval [-1, 1] int n = 5; double min = -1.0, max = 1.0; x = new double[n]; y = new double[n]; for (int i = 0; i < n; i++) { x[i] = min + i * (max - min) / n; y[i] = f.value(x[i]); } double derivativebound = FastMath.E; UnivariateFunction p = interpolator.interpolate(x, y); z = 0.0; expected = f.value(z); result = p.value(z); tolerance = FastMath.abs(derivativebound * partialerror(x, z)); Assert.assertEquals(expected, result, tolerance); z = 0.5; expected = f.value(z); result = p.value(z); tolerance = FastMath.abs(derivativebound * partialerror(x, z)); Assert.assertEquals(expected, result, tolerance); z = -0.5; expected = f.value(z); result = p.value(z); tolerance = FastMath.abs(derivativebound * partialerror(x, z)); Assert.assertEquals(expected, result, tolerance); } /** * Test of parameters for the interpolator. */ @Test public void testParameters() { UnivariateInterpolator interpolator = new NevilleInterpolator(); try { // bad abscissas array double x[] = { 1.0, 2.0, 2.0, 4.0 }; double y[] = { 0.0, 4.0, 4.0, 2.5 }; UnivariateFunction p = interpolator.interpolate(x, y); p.value(0.0); Assert.fail("Expecting NonMonotonicSequenceException - bad abscissas array"); } catch (NonMonotonicSequenceException ex) { // expected } } /** * Returns the partial error term (z-x[0])(z-x[1])...(z-x[n-1])/n! */ protected double partialerror(double x[], double z) throws IllegalArgumentException { if (x.length < 1) { throw new IllegalArgumentException ("Interpolation array cannot be empty."); } double out = 1; for (int i = 0; i < x.length; i++) { out *= (z - x[i]) / (i + 1); } return out; } }