/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math4.analysis.interpolation; import org.apache.commons.math4.TestUtils; import org.apache.commons.math4.analysis.UnivariateFunction; import org.apache.commons.math4.analysis.interpolation.LinearInterpolator; import org.apache.commons.math4.analysis.interpolation.UnivariateInterpolator; import org.apache.commons.math4.analysis.polynomials.PolynomialFunction; import org.apache.commons.math4.analysis.polynomials.PolynomialSplineFunction; import org.apache.commons.math4.exception.DimensionMismatchException; import org.apache.commons.math4.exception.NonMonotonicSequenceException; import org.apache.commons.math4.exception.NumberIsTooSmallException; import org.junit.Assert; import org.junit.Test; /** * Test the LinearInterpolator. */ public class LinearInterpolatorTest { /** error tolerance for spline interpolator value at knot points */ protected double knotTolerance = 1E-12; /** error tolerance for interpolating polynomial coefficients */ protected double coefficientTolerance = 1E-6; /** error tolerance for interpolated values */ protected double interpolationTolerance = 1E-12; @Test public void testInterpolateLinearDegenerateTwoSegment() { double x[] = { 0.0, 0.5, 1.0 }; double y[] = { 0.0, 0.5, 1.0 }; UnivariateInterpolator i = new LinearInterpolator(); UnivariateFunction f = i.interpolate(x, y); verifyInterpolation(f, x, y); // Verify coefficients using analytical values PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials(); double target[] = {y[0], 1d}; TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance); target = new double[]{y[1], 1d}; TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance); // Check interpolation Assert.assertEquals(0.0,f.value(0.0), interpolationTolerance); Assert.assertEquals(0.4,f.value(0.4), interpolationTolerance); Assert.assertEquals(1.0,f.value(1.0), interpolationTolerance); } @Test public void testInterpolateLinearDegenerateThreeSegment() { double x[] = { 0.0, 0.5, 1.0, 1.5 }; double y[] = { 0.0, 0.5, 1.0, 1.5 }; UnivariateInterpolator i = new LinearInterpolator(); UnivariateFunction f = i.interpolate(x, y); verifyInterpolation(f, x, y); // Verify coefficients using analytical values PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials(); double target[] = {y[0], 1d}; TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance); target = new double[]{y[1], 1d}; TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance); target = new double[]{y[2], 1d}; TestUtils.assertEquals(polynomials[2].getCoefficients(), target, coefficientTolerance); // Check interpolation Assert.assertEquals(0,f.value(0), interpolationTolerance); Assert.assertEquals(1.4,f.value(1.4), interpolationTolerance); Assert.assertEquals(1.5,f.value(1.5), interpolationTolerance); } @Test public void testInterpolateLinear() { double x[] = { 0.0, 0.5, 1.0 }; double y[] = { 0.0, 0.5, 0.0 }; UnivariateInterpolator i = new LinearInterpolator(); UnivariateFunction f = i.interpolate(x, y); verifyInterpolation(f, x, y); // Verify coefficients using analytical values PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials(); double target[] = {y[0], 1d}; TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance); target = new double[]{y[1], -1d}; TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance); } @Test public void testIllegalArguments() { // Data set arrays of different size. UnivariateInterpolator i = new LinearInterpolator(); try { double xval[] = { 0.0, 1.0 }; double yval[] = { 0.0, 1.0, 2.0 }; i.interpolate(xval, yval); Assert.fail("Failed to detect data set array with different sizes."); } catch (DimensionMismatchException iae) { // Expected. } // X values not sorted. try { double xval[] = { 0.0, 1.0, 0.5 }; double yval[] = { 0.0, 1.0, 2.0 }; i.interpolate(xval, yval); Assert.fail("Failed to detect unsorted arguments."); } catch (NonMonotonicSequenceException iae) { // Expected. } // Not enough data to interpolate. try { double xval[] = { 0.0 }; double yval[] = { 0.0 }; i.interpolate(xval, yval); Assert.fail("Failed to detect unsorted arguments."); } catch (NumberIsTooSmallException iae) { // Expected. } } /** * verifies that f(x[i]) = y[i] for i = 0..n-1 where n is common length. */ protected void verifyInterpolation(UnivariateFunction f, double x[], double y[]) { for (int i = 0; i < x.length; i++) { Assert.assertEquals(f.value(x[i]), y[i], knotTolerance); } } }