/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math4.distribution; import org.apache.commons.math4.exception.NumberIsTooSmallException; import org.apache.commons.math4.exception.util.LocalizedFormats; import org.apache.commons.numbers.gamma.RegularizedBeta; import org.apache.commons.numbers.gamma.LogGamma; import org.apache.commons.math4.util.FastMath; import org.apache.commons.rng.UniformRandomProvider; import org.apache.commons.rng.sampling.distribution.ContinuousSampler; import org.apache.commons.rng.sampling.distribution.ChengBetaSampler; /** * Implements the Beta distribution. * * @see <a href="http://en.wikipedia.org/wiki/Beta_distribution">Beta distribution</a> * @since 2.0 (changed to concrete class in 3.0) */ public class BetaDistribution extends AbstractRealDistribution { /** * Default inverse cumulative probability accuracy. * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier. */ private static final long serialVersionUID = 20160311L; /** First shape parameter. */ private final double alpha; /** Second shape parameter. */ private final double beta; /** Normalizing factor used in density computations.*/ private final double z; /** Inverse cumulative probability accuracy. */ private final double solverAbsoluteAccuracy; /** * Creates a new instance. * * @param alpha First shape parameter (must be positive). * @param beta Second shape parameter (must be positive). */ public BetaDistribution(double alpha, double beta) { this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a new instance. * * @param alpha First shape parameter (must be positive). * @param beta Second shape parameter (must be positive). * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * * @since 3.1 */ public BetaDistribution(double alpha, double beta, double inverseCumAccuracy) { this.alpha = alpha; this.beta = beta; z = LogGamma.value(alpha) + LogGamma.value(beta) - LogGamma.value(alpha + beta); solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Access the first shape parameter, {@code alpha}. * * @return the first shape parameter. */ public double getAlpha() { return alpha; } /** * Access the second shape parameter, {@code beta}. * * @return the second shape parameter. */ public double getBeta() { return beta; } /** {@inheritDoc} */ @Override public double density(double x) { final double logDensity = logDensity(x); return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity); } /** {@inheritDoc} **/ @Override public double logDensity(double x) { if (x < 0 || x > 1) { return Double.NEGATIVE_INFINITY; } else if (x == 0) { if (alpha < 1) { throw new NumberIsTooSmallException(LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_0_FOR_SOME_ALPHA, alpha, 1, false); } return Double.NEGATIVE_INFINITY; } else if (x == 1) { if (beta < 1) { throw new NumberIsTooSmallException(LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_1_FOR_SOME_BETA, beta, 1, false); } return Double.NEGATIVE_INFINITY; } else { double logX = FastMath.log(x); double log1mX = FastMath.log1p(-x); return (alpha - 1) * logX + (beta - 1) * log1mX - z; } } /** {@inheritDoc} */ @Override public double cumulativeProbability(double x) { if (x <= 0) { return 0; } else if (x >= 1) { return 1; } else { return RegularizedBeta.value(x, alpha, beta); } } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy. * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For first shape parameter {@code alpha} and second shape parameter * {@code beta}, the mean is {@code alpha / (alpha + beta)}. */ @Override public double getNumericalMean() { final double a = getAlpha(); return a / (a + getBeta()); } /** * {@inheritDoc} * * For first shape parameter {@code alpha} and second shape parameter * {@code beta}, the variance is * {@code (alpha * beta) / [(alpha + beta)^2 * (alpha + beta + 1)]}. */ @Override public double getNumericalVariance() { final double a = getAlpha(); final double b = getBeta(); final double alphabetasum = a + b; return (a * b) / ((alphabetasum * alphabetasum) * (alphabetasum + 1)); } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ @Override public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always 1 no matter the parameters. * * @return upper bound of the support (always 1) */ @Override public double getSupportUpperBound() { return 1; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ @Override public boolean isSupportConnected() { return true; } /** * {@inheritDoc} * * Sampling is performed using Cheng's algorithm: * <blockquote> * <pre> * R. C. H. Cheng, * "Generating beta variates with nonintegral shape parameters", * Communications of the ACM, 21, 317-322, 1978. * </pre> * </blockquote> */ @Override public RealDistribution.Sampler createSampler(final UniformRandomProvider rng) { return new RealDistribution.Sampler() { /** * Beta distribution sampler. */ private final ContinuousSampler sampler = new ChengBetaSampler(rng, alpha, beta); /**{@inheritDoc} */ @Override public double sample() { return sampler.sample(); } }; } }