/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math4.ode.sampling; import org.apache.commons.math4.RealFieldElement; import org.apache.commons.math4.exception.DimensionMismatchException; import org.apache.commons.math4.exception.MaxCountExceededException; import org.apache.commons.math4.exception.NoBracketingException; import org.apache.commons.math4.exception.NumberIsTooSmallException; import org.apache.commons.math4.ode.FieldExpandableODE; import org.apache.commons.math4.ode.FirstOrderFieldIntegrator; import org.apache.commons.math4.ode.FieldODEStateAndDerivative; import org.apache.commons.math4.ode.FirstOrderIntegrator; import org.apache.commons.math4.ode.TestFieldProblemAbstract; import org.apache.commons.math4.ode.TestProblemAbstract; import org.apache.commons.math4.ode.sampling.StepHandler; import org.apache.commons.math4.ode.sampling.StepInterpolator; import org.apache.commons.math4.util.FastMath; import org.junit.Assert; public class StepInterpolatorTestUtils { public static void checkDerivativesConsistency(final FirstOrderIntegrator integrator, final TestProblemAbstract problem, final double finiteDifferencesRatio, final double threshold) throws DimensionMismatchException, NumberIsTooSmallException, MaxCountExceededException, NoBracketingException { integrator.addStepHandler(new StepHandler() { @Override public void handleStep(StepInterpolator interpolator, boolean isLast) throws MaxCountExceededException { final double dt = interpolator.getCurrentTime() - interpolator.getPreviousTime(); final double h = finiteDifferencesRatio * dt; final double t = interpolator.getCurrentTime() - 0.3 * dt; if (FastMath.abs(h) < 10 * FastMath.ulp(t)) { return; } interpolator.setInterpolatedTime(t - 4 * h); final double[] yM4h = interpolator.getInterpolatedState().clone(); interpolator.setInterpolatedTime(t - 3 * h); final double[] yM3h = interpolator.getInterpolatedState().clone(); interpolator.setInterpolatedTime(t - 2 * h); final double[] yM2h = interpolator.getInterpolatedState().clone(); interpolator.setInterpolatedTime(t - h); final double[] yM1h = interpolator.getInterpolatedState().clone(); interpolator.setInterpolatedTime(t + h); final double[] yP1h = interpolator.getInterpolatedState().clone(); interpolator.setInterpolatedTime(t + 2 * h); final double[] yP2h = interpolator.getInterpolatedState().clone(); interpolator.setInterpolatedTime(t + 3 * h); final double[] yP3h = interpolator.getInterpolatedState().clone(); interpolator.setInterpolatedTime(t + 4 * h); final double[] yP4h = interpolator.getInterpolatedState().clone(); interpolator.setInterpolatedTime(t); final double[] yDot = interpolator.getInterpolatedDerivatives(); for (int i = 0; i < yDot.length; ++i) { final double approYDot = ( -3 * (yP4h[i] - yM4h[i]) + 32 * (yP3h[i] - yM3h[i]) + -168 * (yP2h[i] - yM2h[i]) + 672 * (yP1h[i] - yM1h[i])) / (840 * h); Assert.assertEquals("" + (approYDot - yDot[i]), approYDot, yDot[i], threshold); } } @Override public void init(double t0, double[] y0, double t) { } }); integrator.integrate(problem, problem.getInitialTime(), problem.getInitialState(), problem.getFinalTime(), new double[problem.getDimension()]); } public static <T extends RealFieldElement<T>> void checkDerivativesConsistency(final FirstOrderFieldIntegrator<T> integrator, final TestFieldProblemAbstract<T> problem, final double threshold) { integrator.addStepHandler(new FieldStepHandler<T>() { @Override public void handleStep(FieldStepInterpolator<T> interpolator, boolean isLast) throws MaxCountExceededException { final T h = interpolator.getCurrentState().getTime().subtract(interpolator.getPreviousState().getTime()).multiply(0.001); final T t = interpolator.getCurrentState().getTime().subtract(h.multiply(300)); if (h.abs().subtract(FastMath.ulp(t.getReal()) * 10).getReal() < 0) { return; } final T[] yM4h = interpolator.getInterpolatedState(t.add(h.multiply(-4))).getState(); final T[] yM3h = interpolator.getInterpolatedState(t.add(h.multiply(-3))).getState(); final T[] yM2h = interpolator.getInterpolatedState(t.add(h.multiply(-2))).getState(); final T[] yM1h = interpolator.getInterpolatedState(t.add(h.multiply(-1))).getState(); final T[] yP1h = interpolator.getInterpolatedState(t.add(h.multiply( 1))).getState(); final T[] yP2h = interpolator.getInterpolatedState(t.add(h.multiply( 2))).getState(); final T[] yP3h = interpolator.getInterpolatedState(t.add(h.multiply( 3))).getState(); final T[] yP4h = interpolator.getInterpolatedState(t.add(h.multiply( 4))).getState(); final T[] yDot = interpolator.getInterpolatedState(t).getDerivative(); for (int i = 0; i < yDot.length; ++i) { final T approYDot = yP4h[i].subtract(yM4h[i]).multiply( -3). add(yP3h[i].subtract(yM3h[i]).multiply( 32)). add(yP2h[i].subtract(yM2h[i]).multiply(-168)). add(yP1h[i].subtract(yM1h[i]).multiply( 672)). divide(h.multiply(840)); Assert.assertEquals(approYDot.getReal(), yDot[i].getReal(), threshold); } } @Override public void init(FieldODEStateAndDerivative<T> state0, T t) { } }); integrator.integrate(new FieldExpandableODE<>(problem), problem.getInitialState(), problem.getFinalTime()); } }