/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math4.distribution; import org.apache.commons.math4.distribution.NormalDistribution; import org.apache.commons.math4.exception.NotStrictlyPositiveException; import org.junit.Assert; import org.junit.Test; /** * Test cases for {@link NormalDistribution}. Extends * {@link RealDistributionAbstractTest}. See class javadoc of that class * for details. * */ public class NormalDistributionTest extends RealDistributionAbstractTest { //-------------- Implementations for abstract methods ----------------------- /** Creates the default real distribution instance to use in tests. */ @Override public NormalDistribution makeDistribution() { return new NormalDistribution(2.1, 1.4); } /** Creates the default cumulative probability distribution test input values */ @Override public double[] makeCumulativeTestPoints() { // quantiles computed using R return new double[] {-2.226325228634938d, -1.156887023657177d, -0.643949578356075d, -0.2027950777320613d, 0.305827808237559d, 6.42632522863494d, 5.35688702365718d, 4.843949578356074d, 4.40279507773206d, 3.89417219176244d}; } /** Creates the default cumulative probability density test expected values */ @Override public double[] makeCumulativeTestValues() { return new double[] {0.001d, 0.01d, 0.025d, 0.05d, 0.1d, 0.999d, 0.990d, 0.975d, 0.950d, 0.900d}; } /** Creates the default probability density test expected values */ @Override public double[] makeDensityTestValues() { return new double[] {0.00240506434076, 0.0190372444310, 0.0417464784322, 0.0736683145538, 0.125355951380, 0.00240506434076, 0.0190372444310, 0.0417464784322, 0.0736683145538, 0.125355951380}; } // --------------------- Override tolerance -------------- protected double defaultTolerance = NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY; @Override public void setUp() { super.setUp(); setTolerance(defaultTolerance); } //---------------------------- Additional test cases ------------------------- private void verifyQuantiles() { NormalDistribution distribution = (NormalDistribution) getDistribution(); double mu = distribution.getMean(); double sigma = distribution.getStandardDeviation(); setCumulativeTestPoints( new double[] {mu - 2 *sigma, mu - sigma, mu, mu + sigma, mu + 2 * sigma, mu + 3 * sigma, mu + 4 * sigma, mu + 5 * sigma}); // Quantiles computed using R (same as Mathematica) setCumulativeTestValues(new double[] {0.02275013194817921, 0.158655253931457, 0.5, 0.841344746068543, 0.977249868051821, 0.99865010196837, 0.999968328758167, 0.999999713348428}); verifyCumulativeProbabilities(); } @Test public void testQuantiles() { setDensityTestValues(new double[] {0.0385649760808, 0.172836231799, 0.284958771715, 0.172836231799, 0.0385649760808, 0.00316560600853, 9.55930184035e-05, 1.06194251052e-06}); verifyQuantiles(); verifyDensities(); setDistribution(new NormalDistribution(0, 1)); setDensityTestValues(new double[] {0.0539909665132, 0.241970724519, 0.398942280401, 0.241970724519, 0.0539909665132, 0.00443184841194, 0.000133830225765, 1.48671951473e-06}); verifyQuantiles(); verifyDensities(); setDistribution(new NormalDistribution(0, 0.1)); setDensityTestValues(new double[] {0.539909665132, 2.41970724519, 3.98942280401, 2.41970724519, 0.539909665132, 0.0443184841194, 0.00133830225765, 1.48671951473e-05}); verifyQuantiles(); verifyDensities(); } @Test public void testInverseCumulativeProbabilityExtremes() { setInverseCumulativeTestPoints(new double[] {0, 1}); setInverseCumulativeTestValues( new double[] {Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY}); verifyInverseCumulativeProbabilities(); } // MATH-1257 @Test public void testCumulativeProbability() { final RealDistribution dist = new NormalDistribution(0, 1); double x = -10; double expected = 7.61985e-24; double v = dist.cumulativeProbability(x); double tol = 1e-5; Assert.assertEquals(1, v / expected, 1e-5); } @Test public void testGetMean() { NormalDistribution distribution = (NormalDistribution) getDistribution(); Assert.assertEquals(2.1, distribution.getMean(), 0); } @Test public void testGetStandardDeviation() { NormalDistribution distribution = (NormalDistribution) getDistribution(); Assert.assertEquals(1.4, distribution.getStandardDeviation(), 0); } @Test(expected=NotStrictlyPositiveException.class) public void testPreconditions() { new NormalDistribution(1, 0); } @Test public void testDensity() { double [] x = new double[]{-2, -1, 0, 1, 2}; // R 2.5: print(dnorm(c(-2,-1,0,1,2)), digits=10) checkDensity(0, 1, x, new double[]{0.05399096651, 0.24197072452, 0.39894228040, 0.24197072452, 0.05399096651}); // R 2.5: print(dnorm(c(-2,-1,0,1,2), mean=1.1), digits=10) checkDensity(1.1, 1, x, new double[]{0.003266819056,0.043983595980,0.217852177033,0.396952547477,0.266085249899}); } private void checkDensity(double mean, double sd, double[] x, double[] expected) { NormalDistribution d = new NormalDistribution(mean, sd); for (int i = 0; i < x.length; i++) { Assert.assertEquals(expected[i], d.density(x[i]), 1e-9); } } /** * Check to make sure top-coding of extreme values works correctly. * Verifies fixes for JIRA MATH-167, MATH-414 */ @Test public void testExtremeValues() { NormalDistribution distribution = new NormalDistribution(0, 1); for (int i = 0; i < 100; i++) { // make sure no convergence exception double lowerTail = distribution.cumulativeProbability(-i); double upperTail = distribution.cumulativeProbability(i); if (i < 9) { // make sure not top-coded // For i = 10, due to bad tail precision in erf (MATH-364), 1 is returned // TODO: once MATH-364 is resolved, replace 9 with 30 Assert.assertTrue(lowerTail > 0.0d); Assert.assertTrue(upperTail < 1.0d); } else { // make sure top coding not reversed Assert.assertTrue(lowerTail < 0.00001); Assert.assertTrue(upperTail > 0.99999); } } Assert.assertEquals(distribution.cumulativeProbability(Double.MAX_VALUE), 1, 0); Assert.assertEquals(distribution.cumulativeProbability(-Double.MAX_VALUE), 0, 0); Assert.assertEquals(distribution.cumulativeProbability(Double.POSITIVE_INFINITY), 1, 0); Assert.assertEquals(distribution.cumulativeProbability(Double.NEGATIVE_INFINITY), 0, 0); } @Test public void testMath280() { NormalDistribution normal = new NormalDistribution(0,1); double result = normal.inverseCumulativeProbability(0.9986501019683698); Assert.assertEquals(3.0, result, defaultTolerance); result = normal.inverseCumulativeProbability(0.841344746068543); Assert.assertEquals(1.0, result, defaultTolerance); result = normal.inverseCumulativeProbability(0.9999683287581673); Assert.assertEquals(4.0, result, defaultTolerance); result = normal.inverseCumulativeProbability(0.9772498680518209); Assert.assertEquals(2.0, result, defaultTolerance); } @Test public void testMoments() { final double tol = 1e-9; NormalDistribution dist; dist = new NormalDistribution(0, 1); Assert.assertEquals(dist.getNumericalMean(), 0, tol); Assert.assertEquals(dist.getNumericalVariance(), 1, tol); dist = new NormalDistribution(2.2, 1.4); Assert.assertEquals(dist.getNumericalMean(), 2.2, tol); Assert.assertEquals(dist.getNumericalVariance(), 1.4 * 1.4, tol); dist = new NormalDistribution(-2000.9, 10.4); Assert.assertEquals(dist.getNumericalMean(), -2000.9, tol); Assert.assertEquals(dist.getNumericalVariance(), 10.4 * 10.4, tol); } }