/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math4.linear; import org.apache.commons.math4.exception.MathIllegalArgumentException; import org.apache.commons.math4.linear.DecompositionSolver; import org.apache.commons.math4.linear.LUDecomposition; import org.apache.commons.math4.linear.MatrixUtils; import org.apache.commons.math4.linear.RealMatrix; import org.apache.commons.math4.linear.SingularMatrixException; import org.junit.Test; import org.junit.Assert; public class LUSolverTest { private double[][] testData = { { 1.0, 2.0, 3.0}, { 2.0, 5.0, 3.0}, { 1.0, 0.0, 8.0} }; private double[][] luData = { { 2.0, 3.0, 3.0 }, { 0.0, 5.0, 7.0 }, { 6.0, 9.0, 8.0 } }; // singular matrices private double[][] singular = { { 2.0, 3.0 }, { 2.0, 3.0 } }; private double[][] bigSingular = { { 1.0, 2.0, 3.0, 4.0 }, { 2.0, 5.0, 3.0, 4.0 }, { 7.0, 3.0, 256.0, 1930.0 }, { 3.0, 7.0, 6.0, 8.0 } }; // 4th row = 1st + 2nd /** test threshold impact */ @Test public void testThreshold() { final RealMatrix matrix = MatrixUtils.createRealMatrix(new double[][] { { 1.0, 2.0, 3.0}, { 2.0, 5.0, 3.0}, { 4.000001, 9.0, 9.0} }); Assert.assertFalse(new LUDecomposition(matrix, 1.0e-5).getSolver().isNonSingular()); Assert.assertTrue(new LUDecomposition(matrix, 1.0e-10).getSolver().isNonSingular()); } /** test singular */ @Test public void testSingular() { DecompositionSolver solver = new LUDecomposition(MatrixUtils.createRealMatrix(testData)).getSolver(); Assert.assertTrue(solver.isNonSingular()); solver = new LUDecomposition(MatrixUtils.createRealMatrix(singular)).getSolver(); Assert.assertFalse(solver.isNonSingular()); solver = new LUDecomposition(MatrixUtils.createRealMatrix(bigSingular)).getSolver(); Assert.assertFalse(solver.isNonSingular()); } /** test solve dimension errors */ @Test public void testSolveDimensionErrors() { DecompositionSolver solver = new LUDecomposition(MatrixUtils.createRealMatrix(testData)).getSolver(); RealMatrix b = MatrixUtils.createRealMatrix(new double[2][2]); try { solver.solve(b); Assert.fail("an exception should have been thrown"); } catch (MathIllegalArgumentException iae) { // expected behavior } try { solver.solve(b.getColumnVector(0)); Assert.fail("an exception should have been thrown"); } catch (MathIllegalArgumentException iae) { // expected behavior } try { solver.solve(new ArrayRealVectorTest.RealVectorTestImpl(b.getColumn(0))); Assert.fail("an exception should have been thrown"); } catch (MathIllegalArgumentException iae) { // expected behavior } } /** test solve singularity errors */ @Test public void testSolveSingularityErrors() { DecompositionSolver solver = new LUDecomposition(MatrixUtils.createRealMatrix(singular)).getSolver(); RealMatrix b = MatrixUtils.createRealMatrix(new double[2][2]); try { solver.solve(b); Assert.fail("an exception should have been thrown"); } catch (SingularMatrixException ime) { // expected behavior } try { solver.solve(b.getColumnVector(0)); Assert.fail("an exception should have been thrown"); } catch (SingularMatrixException ime) { // expected behavior } try { solver.solve(new ArrayRealVectorTest.RealVectorTestImpl(b.getColumn(0))); Assert.fail("an exception should have been thrown"); } catch (SingularMatrixException ime) { // expected behavior } } /** test solve */ @Test public void testSolve() { DecompositionSolver solver = new LUDecomposition(MatrixUtils.createRealMatrix(testData)).getSolver(); RealMatrix b = MatrixUtils.createRealMatrix(new double[][] { { 1, 0 }, { 2, -5 }, { 3, 1 } }); RealMatrix xRef = MatrixUtils.createRealMatrix(new double[][] { { 19, -71 }, { -6, 22 }, { -2, 9 } }); // using RealMatrix Assert.assertEquals(0, solver.solve(b).subtract(xRef).getNorm(), 1.0e-13); // using ArrayRealVector for (int i = 0; i < b.getColumnDimension(); ++i) { Assert.assertEquals(0, solver.solve(b.getColumnVector(i)).subtract(xRef.getColumnVector(i)).getNorm(), 1.0e-13); } // using RealVector with an alternate implementation for (int i = 0; i < b.getColumnDimension(); ++i) { ArrayRealVectorTest.RealVectorTestImpl v = new ArrayRealVectorTest.RealVectorTestImpl(b.getColumn(i)); Assert.assertEquals(0, solver.solve(v).subtract(xRef.getColumnVector(i)).getNorm(), 1.0e-13); } } /** test determinant */ @Test public void testDeterminant() { Assert.assertEquals( -1, getDeterminant(MatrixUtils.createRealMatrix(testData)), 1.0e-15); Assert.assertEquals(-10, getDeterminant(MatrixUtils.createRealMatrix(luData)), 1.0e-14); Assert.assertEquals( 0, getDeterminant(MatrixUtils.createRealMatrix(singular)), 1.0e-17); Assert.assertEquals( 0, getDeterminant(MatrixUtils.createRealMatrix(bigSingular)), 1.0e-10); } private double getDeterminant(RealMatrix m) { return new LUDecomposition(m).getDeterminant(); } }