/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math4.analysis.interpolation; import org.apache.commons.math4.analysis.BivariateFunction; import org.apache.commons.math4.distribution.RealDistribution; import org.apache.commons.math4.distribution.UniformRealDistribution; import org.apache.commons.math4.exception.DimensionMismatchException; import org.apache.commons.math4.exception.MathIllegalArgumentException; import org.apache.commons.math4.exception.OutOfRangeException; import org.apache.commons.rng.UniformRandomProvider; import org.apache.commons.rng.simple.RandomSource; import org.apache.commons.math4.util.FastMath; import org.apache.commons.numbers.core.Precision; import org.junit.Assert; import org.junit.Test; /** * Test case for the bicubic function. */ public final class BicubicInterpolatingFunctionTest { /** * Test preconditions. */ @Test public void testPreconditions() { double[] xval = new double[] {3, 4, 5, 6.5}; double[] yval = new double[] {-4, -3, -1, 2.5}; double[][] zval = new double[xval.length][yval.length]; @SuppressWarnings("unused") BivariateFunction bcf = new BicubicInterpolatingFunction(xval, yval, zval, zval, zval, zval); double[] wxval = new double[] {3, 2, 5, 6.5}; try { bcf = new BicubicInterpolatingFunction(wxval, yval, zval, zval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (MathIllegalArgumentException e) { // Expected } double[] wyval = new double[] {-4, -1, -1, 2.5}; try { bcf = new BicubicInterpolatingFunction(xval, wyval, zval, zval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (MathIllegalArgumentException e) { // Expected } double[][] wzval = new double[xval.length][yval.length - 1]; try { bcf = new BicubicInterpolatingFunction(xval, yval, wzval, zval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicInterpolatingFunction(xval, yval, zval, wzval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicInterpolatingFunction(xval, yval, zval, zval, wzval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicInterpolatingFunction(xval, yval, zval, zval, zval, wzval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } wzval = new double[xval.length - 1][yval.length]; try { bcf = new BicubicInterpolatingFunction(xval, yval, wzval, zval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicInterpolatingFunction(xval, yval, zval, wzval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicInterpolatingFunction(xval, yval, zval, zval, wzval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicInterpolatingFunction(xval, yval, zval, zval, zval, wzval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } } @Test public void testIsValidPoint() { final double xMin = -12; final double xMax = 34; final double yMin = 5; final double yMax = 67; final double[] xval = new double[] { xMin, xMax }; final double[] yval = new double[] { yMin, yMax }; final double[][] f = new double[][] { { 1, 2 }, { 3, 4 } }; final double[][] dFdX = f; final double[][] dFdY = f; final double[][] dFdXdY = f; final BicubicInterpolatingFunction bcf = new BicubicInterpolatingFunction(xval, yval, f, dFdX, dFdY, dFdXdY); double x, y; x = xMin; y = yMin; Assert.assertTrue(bcf.isValidPoint(x, y)); // Ensure that no exception is thrown. bcf.value(x, y); x = xMax; y = yMax; Assert.assertTrue(bcf.isValidPoint(x, y)); // Ensure that no exception is thrown. bcf.value(x, y); final double xRange = xMax - xMin; final double yRange = yMax - yMin; x = xMin + xRange / 3.4; y = yMin + yRange / 1.2; Assert.assertTrue(bcf.isValidPoint(x, y)); // Ensure that no exception is thrown. bcf.value(x, y); final double small = 1e-8; x = xMin - small; y = yMax; Assert.assertFalse(bcf.isValidPoint(x, y)); // Ensure that an exception would have been thrown. try { bcf.value(x, y); Assert.fail("OutOfRangeException expected"); } catch (OutOfRangeException expected) {} x = xMin; y = yMax + small; Assert.assertFalse(bcf.isValidPoint(x, y)); // Ensure that an exception would have been thrown. try { bcf.value(x, y); Assert.fail("OutOfRangeException expected"); } catch (OutOfRangeException expected) {} } /** * Interpolating a plane. * <p> * z = 2 x - 3 y + 5 */ @Test public void testPlane() { final int numberOfElements = 10; final double minimumX = -10; final double maximumX = 10; final double minimumY = -10; final double maximumY = 10; final int numberOfSamples = 1000; final double interpolationTolerance = 1e-15; final double maxTolerance = 1e-14; // Function values BivariateFunction f = new BivariateFunction() { @Override public double value(double x, double y) { return 2 * x - 3 * y + 5; } }; BivariateFunction dfdx = new BivariateFunction() { @Override public double value(double x, double y) { return 2; } }; BivariateFunction dfdy = new BivariateFunction() { @Override public double value(double x, double y) { return -3; } }; BivariateFunction d2fdxdy = new BivariateFunction() { @Override public double value(double x, double y) { return 0; } }; testInterpolation(minimumX, maximumX, minimumY, maximumY, numberOfElements, numberOfSamples, f, dfdx, dfdy, d2fdxdy, interpolationTolerance, maxTolerance, false); } /** * Interpolating a paraboloid. * <p> * z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5 */ @Test public void testParaboloid() { final int numberOfElements = 10; final double minimumX = -10; final double maximumX = 10; final double minimumY = -10; final double maximumY = 10; final int numberOfSamples = 1000; final double interpolationTolerance = 2e-14; final double maxTolerance = 1e-12; // Function values BivariateFunction f = new BivariateFunction() { @Override public double value(double x, double y) { return 2 * x * x - 3 * y * y + 4 * x * y - 5; } }; BivariateFunction dfdx = new BivariateFunction() { @Override public double value(double x, double y) { return 4 * (x + y); } }; BivariateFunction dfdy = new BivariateFunction() { @Override public double value(double x, double y) { return 4 * x - 6 * y; } }; BivariateFunction d2fdxdy = new BivariateFunction() { @Override public double value(double x, double y) { return 4; } }; testInterpolation(minimumX, maximumX, minimumY, maximumY, numberOfElements, numberOfSamples, f, dfdx, dfdy, d2fdxdy, interpolationTolerance, maxTolerance, false); } /** * @param minimumX Lower bound of interpolation range along the x-coordinate. * @param maximumX Higher bound of interpolation range along the x-coordinate. * @param minimumY Lower bound of interpolation range along the y-coordinate. * @param maximumY Higher bound of interpolation range along the y-coordinate. * @param numberOfElements Number of data points (along each dimension). * @param numberOfSamples Number of test points. * @param f Function to test. * @param dfdx Partial derivative w.r.t. x of the function to test. * @param dfdy Partial derivative w.r.t. y of the function to test. * @param d2fdxdy Second partial cross-derivative of the function to test. * @param meanTolerance Allowed average error (mean error on all interpolated values). * @param maxTolerance Allowed error on each interpolated value. */ private void testInterpolation(double minimumX, double maximumX, double minimumY, double maximumY, int numberOfElements, int numberOfSamples, BivariateFunction f, BivariateFunction dfdx, BivariateFunction dfdy, BivariateFunction d2fdxdy, double meanTolerance, double maxTolerance, boolean print) { double expected; double actual; double currentX; double currentY; final double deltaX = (maximumX - minimumX) / numberOfElements; final double deltaY = (maximumY - minimumY) / numberOfElements; final double[] xValues = new double[numberOfElements]; final double[] yValues = new double[numberOfElements]; final double[][] zValues = new double[numberOfElements][numberOfElements]; final double[][] dzdx = new double[numberOfElements][numberOfElements]; final double[][] dzdy = new double[numberOfElements][numberOfElements]; final double[][] d2zdxdy = new double[numberOfElements][numberOfElements]; for (int i = 0; i < numberOfElements; i++) { xValues[i] = minimumX + deltaX * i; final double x = xValues[i]; for (int j = 0; j < numberOfElements; j++) { yValues[j] = minimumY + deltaY * j; final double y = yValues[j]; zValues[i][j] = f.value(x, y); dzdx[i][j] = dfdx.value(x, y); dzdy[i][j] = dfdy.value(x, y); d2zdxdy[i][j] = d2fdxdy.value(x, y); } } final BivariateFunction interpolation = new BicubicInterpolatingFunction(xValues, yValues, zValues, dzdx, dzdy, d2zdxdy); for (int i = 0; i < numberOfElements; i++) { currentX = xValues[i]; for (int j = 0; j < numberOfElements; j++) { currentY = yValues[j]; expected = f.value(currentX, currentY); actual = interpolation.value(currentX, currentY); Assert.assertTrue("On data point: " + expected + " != " + actual, Precision.equals(expected, actual)); } } final UniformRandomProvider rng = RandomSource.create(RandomSource.WELL_19937_C, 1234567L); final RealDistribution.Sampler distX = new UniformRealDistribution(xValues[0], xValues[xValues.length - 1]).createSampler(rng); final RealDistribution.Sampler distY = new UniformRealDistribution(yValues[0], yValues[yValues.length - 1]).createSampler(rng); double sumError = 0; for (int i = 0; i < numberOfSamples; i++) { currentX = distX.sample(); currentY = distY.sample(); expected = f.value(currentX, currentY); if (print) { System.out.println(currentX + " " + currentY + " -> "); } actual = interpolation.value(currentX, currentY); sumError += FastMath.abs(actual - expected); if (print) { System.out.println(actual + " (diff=" + (expected - actual) + ")"); } Assert.assertEquals(expected, actual, maxTolerance); } final double meanError = sumError / numberOfSamples; Assert.assertEquals(0, meanError, meanTolerance); } }