/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math4.analysis.integration; import org.apache.commons.math4.analysis.QuinticFunction; import org.apache.commons.math4.analysis.UnivariateFunction; import org.apache.commons.math4.analysis.function.Sin; import org.apache.commons.math4.analysis.integration.MidPointIntegrator; import org.apache.commons.math4.analysis.integration.UnivariateIntegrator; import org.apache.commons.math4.exception.NumberIsTooLargeException; import org.apache.commons.math4.exception.NumberIsTooSmallException; import org.apache.commons.math4.util.FastMath; import org.junit.Assert; import org.junit.Test; /** * Test case for midpoint integrator. * <p> * Test runs show that for a default relative accuracy of 1E-6, it generally * takes 10 to 15 iterations for the integral to converge. * */ public final class MidPointIntegratorTest { /** * Test of integrator for the sine function. */ @Test public void testLowAccuracy() { UnivariateFunction f = new QuinticFunction(); UnivariateIntegrator integrator = new MidPointIntegrator(0.01, 1.0e-10, 2, 4); double min = -10; double max = -9; double expected = -3697001.0 / 48.0; double tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy()); double result = integrator.integrate(Integer.MAX_VALUE, f, min, max); Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2); Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2); Assert.assertEquals(expected, result, tolerance); } /** * Test of integrator for the sine function. */ @Test public void testSinFunction() { UnivariateFunction f = new Sin(); UnivariateIntegrator integrator = new MidPointIntegrator(); double min = 0; double max = FastMath.PI; double expected = 2; double tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy()); double result = integrator.integrate(Integer.MAX_VALUE, f, min, max); Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2); Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2); Assert.assertEquals(expected, result, tolerance); min = -FastMath.PI/3; max = 0; expected = -0.5; tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy()); result = integrator.integrate(Integer.MAX_VALUE, f, min, max); Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2); Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2); Assert.assertEquals(expected, result, tolerance); } /** * Test of integrator for the quintic function. */ @Test public void testQuinticFunction() { UnivariateFunction f = new QuinticFunction(); UnivariateIntegrator integrator = new MidPointIntegrator(); double min = 0; double max = 1; double expected = -1.0 / 48; double tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy()); double result = integrator.integrate(Integer.MAX_VALUE, f, min, max); Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2); Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2); Assert.assertEquals(expected, result, tolerance); min = 0; max = 0.5; expected = 11.0 / 768; tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy()); result = integrator.integrate(Integer.MAX_VALUE, f, min, max); Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2); Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2); Assert.assertEquals(expected, result, tolerance); min = -1; max = 4; expected = 2048 / 3.0 - 78 + 1.0 / 48; tolerance = FastMath.abs(expected * integrator.getRelativeAccuracy()); result = integrator.integrate(Integer.MAX_VALUE, f, min, max); Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 2); Assert.assertTrue(integrator.getIterations() < MidPointIntegrator.MIDPOINT_MAX_ITERATIONS_COUNT / 2); Assert.assertEquals(expected, result, tolerance); } /** * Test of parameters for the integrator. */ @Test public void testParameters() { UnivariateFunction f = new Sin(); try { // bad interval new MidPointIntegrator().integrate(1000, f, 1, -1); Assert.fail("Expecting NumberIsTooLargeException - bad interval"); } catch (NumberIsTooLargeException ex) { // expected } try { // bad iteration limits new MidPointIntegrator(5, 4); Assert.fail("Expecting NumberIsTooSmallException - bad iteration limits"); } catch (NumberIsTooSmallException ex) { // expected } try { // bad iteration limits new MidPointIntegrator(10, 99); Assert.fail("Expecting NumberIsTooLargeException - bad iteration limits"); } catch (NumberIsTooLargeException ex) { // expected } } }