/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math4.distribution; import org.apache.commons.math4.exception.NotStrictlyPositiveException; import org.apache.commons.math4.exception.OutOfRangeException; import org.apache.commons.math4.exception.util.LocalizedFormats; import org.apache.commons.math4.util.FastMath; import org.apache.commons.rng.UniformRandomProvider; import org.apache.commons.rng.sampling.distribution.ContinuousSampler; import org.apache.commons.rng.sampling.distribution.AhrensDieterExponentialSampler; /** * Implementation of the exponential distribution. * * @see <a href="http://en.wikipedia.org/wiki/Exponential_distribution">Exponential distribution (Wikipedia)</a> * @see <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">Exponential distribution (MathWorld)</a> */ public class ExponentialDistribution extends AbstractRealDistribution { /** * Default inverse cumulative probability accuracy. * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier */ private static final long serialVersionUID = 20160311L; /** The mean of this distribution. */ private final double mean; /** The logarithm of the mean, stored to reduce computing time. **/ private final double logMean; /** Inverse cumulative probability accuracy. */ private final double solverAbsoluteAccuracy; /** * Creates a distribution. * * @param mean mean of this distribution. */ public ExponentialDistribution(double mean) { this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a distribution. * * @param mean Mean of this distribution. * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code mean <= 0}. * * @since 2.1 */ public ExponentialDistribution(double mean, double inverseCumAccuracy) throws NotStrictlyPositiveException { if (mean <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean); } this.mean = mean; logMean = FastMath.log(mean); solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Access the mean. * * @return the mean. */ public double getMean() { return mean; } /** {@inheritDoc} */ @Override public double density(double x) { final double logDensity = logDensity(x); return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity); } /** {@inheritDoc} **/ @Override public double logDensity(double x) { if (x < 0) { return Double.NEGATIVE_INFINITY; } return -x / mean - logMean; } /** * {@inheritDoc} * * The implementation of this method is based on: * <ul> * <li> * <a href="http://mathworld.wolfram.com/ExponentialDistribution.html"> * Exponential Distribution</a>, equation (1).</li> * </ul> */ @Override public double cumulativeProbability(double x) { double ret; if (x <= 0.0) { ret = 0.0; } else { ret = 1.0 - FastMath.exp(-x / mean); } return ret; } /** * {@inheritDoc} * * Returns {@code 0} when {@code p= = 0} and * {@code Double.POSITIVE_INFINITY} when {@code p == 1}. */ @Override public double inverseCumulativeProbability(double p) throws OutOfRangeException { double ret; if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0.0, 1.0); } else if (p == 1.0) { ret = Double.POSITIVE_INFINITY; } else { ret = -mean * FastMath.log(1.0 - p); } return ret; } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For mean parameter {@code k}, the mean is {@code k}. */ @Override public double getNumericalMean() { return getMean(); } /** * {@inheritDoc} * * For mean parameter {@code k}, the variance is {@code k^2}. */ @Override public double getNumericalVariance() { final double m = getMean(); return m * m; } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the mean parameter. * * @return lower bound of the support (always 0) */ @Override public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the mean parameter. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ @Override public boolean isSupportConnected() { return true; } /** * {@inheritDoc} * * <p>Sampling algorithm uses the * <a href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html"> * inversion method</a> to generate exponentially distributed * random values from uniform deviates. * </p> */ @Override public RealDistribution.Sampler createSampler(final UniformRandomProvider rng) { return new RealDistribution.Sampler() { /** * Exponential distribution sampler. */ private final ContinuousSampler sampler = new AhrensDieterExponentialSampler(rng, mean); /**{@inheritDoc} */ @Override public double sample() { return sampler.sample(); } }; } }