package org.bouncycastle.tls.crypto.impl; import java.io.IOException; import org.bouncycastle.tls.ProtocolVersion; import org.bouncycastle.tls.TlsUtils; import org.bouncycastle.tls.crypto.TlsCryptoParameters; import org.bouncycastle.tls.crypto.TlsHMAC; import org.bouncycastle.util.Arrays; /** * A generic TLS MAC implementation, acting as an HMAC based on some underlying Digest. */ class TlsSuiteHMac implements TlsSuiteMac { protected TlsCryptoParameters cryptoParams; protected byte[] secret; protected TlsHMAC mac; protected int digestBlockSize; protected int digestOverhead; protected int macLength; /** * Generate a new instance of an TlsMac. * * @param cryptoParams the TLS client context specific crypto parameters. * @param mac The MAC to use. */ public TlsSuiteHMac(TlsCryptoParameters cryptoParams, TlsHMAC mac) { this.cryptoParams = cryptoParams; this.digestBlockSize = mac.getInternalBlockSize(); this.digestOverhead = digestBlockSize / 8; if (TlsImplUtils.isSSL(cryptoParams)) { // TODO This should check the actual algorithm, not assume based on the digest size if (mac.getMacLength() == 20) { /* * NOTE: When SHA-1 is used with the SSL 3.0 MAC, the secret + input pad is not * digest block-aligned. */ this.digestOverhead = 4; } } // NOTE: The input pad for HMAC is always a full digest block this.mac = mac; } public void setKey(byte[] key) throws IOException { this.secret = Arrays.clone(key); this.mac.setKey(secret); this.macLength = mac.getMacLength(); if (cryptoParams.getSecurityParameters().isTruncatedHMac()) { this.macLength = Math.min(this.macLength, 10); } } /** * @return the MAC write secret */ public byte[] getMACSecret() { return this.secret; } /** * @return The output length of this MAC. */ public int getSize() { return macLength; } /** * Calculate the MAC for some given data. * * @param type The message type of the message. * @param message A byte-buffer containing the message. * @param offset The number of bytes to skip, before the message starts. * @param length The length of the message. * @return A new byte-buffer containing the MAC value. */ public byte[] calculateMac(long seqNo, short type, byte[] message, int offset, int length) { ProtocolVersion serverVersion = cryptoParams.getServerVersion(); boolean isSSL = serverVersion.isSSL(); byte[] macHeader = new byte[isSSL ? 11 : 13]; TlsUtils.writeUint64(seqNo, macHeader, 0); TlsUtils.writeUint8(type, macHeader, 8); if (!isSSL) { TlsUtils.writeVersion(serverVersion, macHeader, 9); } TlsUtils.writeUint16(length, macHeader, macHeader.length - 2); mac.update(macHeader, 0, macHeader.length); mac.update(message, offset, length); return truncate(mac.calculateMAC()); } public byte[] calculateMacConstantTime(long seqNo, short type, byte[] message, int offset, int length, int expectedLength, byte[] dummyData) { /* * Actual MAC only calculated on 'length' bytes... */ byte[] result = calculateMac(seqNo, type, message, offset, length); /* * ...but ensure a constant number of complete digest blocks are processed (as many as would * be needed for 'fullLength' bytes of input). */ int headerLength = TlsImplUtils.isSSL(cryptoParams) ? 11 : 13; // How many extra full blocks do we need to calculate? int extra = getDigestBlockCount(headerLength + expectedLength) - getDigestBlockCount(headerLength + length); while (--extra >= 0) { mac.update(dummyData, 0, digestBlockSize); } // One more byte in case the implementation is "lazy" about processing blocks mac.update(dummyData, 0, 1); mac.reset(); return result; } protected int getDigestBlockCount(int inputLength) { // NOTE: This calculation assumes a minimum of 1 pad byte return (inputLength + digestOverhead) / digestBlockSize; } protected byte[] truncate(byte[] bs) { if (bs.length <= macLength) { return bs; } return Arrays.copyOf(bs, macLength); } }