package org.bouncycastle.math.ec.custom.sec; import java.math.BigInteger; import org.bouncycastle.math.ec.ECFieldElement; import org.bouncycastle.math.raw.Mod; import org.bouncycastle.math.raw.Nat128; import org.bouncycastle.util.Arrays; public class SecP128R1FieldElement extends ECFieldElement { public static final BigInteger Q = SecP128R1Curve.q; protected int[] x; public SecP128R1FieldElement(BigInteger x) { if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0) { throw new IllegalArgumentException("x value invalid for SecP128R1FieldElement"); } this.x = SecP128R1Field.fromBigInteger(x); } public SecP128R1FieldElement() { this.x = Nat128.create(); } protected SecP128R1FieldElement(int[] x) { this.x = x; } public boolean isZero() { return Nat128.isZero(x); } public boolean isOne() { return Nat128.isOne(x); } public boolean testBitZero() { return Nat128.getBit(x, 0) == 1; } public BigInteger toBigInteger() { return Nat128.toBigInteger(x); } public String getFieldName() { return "SecP128R1Field"; } public int getFieldSize() { return Q.bitLength(); } public ECFieldElement add(ECFieldElement b) { int[] z = Nat128.create(); SecP128R1Field.add(x, ((SecP128R1FieldElement)b).x, z); return new SecP128R1FieldElement(z); } public ECFieldElement addOne() { int[] z = Nat128.create(); SecP128R1Field.addOne(x, z); return new SecP128R1FieldElement(z); } public ECFieldElement subtract(ECFieldElement b) { int[] z = Nat128.create(); SecP128R1Field.subtract(x, ((SecP128R1FieldElement)b).x, z); return new SecP128R1FieldElement(z); } public ECFieldElement multiply(ECFieldElement b) { int[] z = Nat128.create(); SecP128R1Field.multiply(x, ((SecP128R1FieldElement)b).x, z); return new SecP128R1FieldElement(z); } public ECFieldElement divide(ECFieldElement b) { // return multiply(b.invert()); int[] z = Nat128.create(); Mod.invert(SecP128R1Field.P, ((SecP128R1FieldElement)b).x, z); SecP128R1Field.multiply(z, x, z); return new SecP128R1FieldElement(z); } public ECFieldElement negate() { int[] z = Nat128.create(); SecP128R1Field.negate(x, z); return new SecP128R1FieldElement(z); } public ECFieldElement square() { int[] z = Nat128.create(); SecP128R1Field.square(x, z); return new SecP128R1FieldElement(z); } public ECFieldElement invert() { // return new SecP128R1FieldElement(toBigInteger().modInverse(Q)); int[] z = Nat128.create(); Mod.invert(SecP128R1Field.P, x, z); return new SecP128R1FieldElement(z); } // D.1.4 91 /** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public ECFieldElement sqrt() { /* * Raise this element to the exponent 2^126 - 2^95 * * Breaking up the exponent's binary representation into "repunits", we get: * { 31 1s } { 95 0s } * * Therefore we need an addition chain containing 31 (the length of the repunit) We use: * 1, 2, 4, 8, 10, 20, 30, [31] */ int[] x1 = this.x; if (Nat128.isZero(x1) || Nat128.isOne(x1)) { return this; } int[] x2 = Nat128.create(); SecP128R1Field.square(x1, x2); SecP128R1Field.multiply(x2, x1, x2); int[] x4 = Nat128.create(); SecP128R1Field.squareN(x2, 2, x4); SecP128R1Field.multiply(x4, x2, x4); int[] x8 = Nat128.create(); SecP128R1Field.squareN(x4, 4, x8); SecP128R1Field.multiply(x8, x4, x8); int[] x10 = x4; SecP128R1Field.squareN(x8, 2, x10); SecP128R1Field.multiply(x10, x2, x10); int[] x20 = x2; SecP128R1Field.squareN(x10, 10, x20); SecP128R1Field.multiply(x20, x10, x20); int[] x30 = x8; SecP128R1Field.squareN(x20, 10, x30); SecP128R1Field.multiply(x30, x10, x30); int[] x31 = x10; SecP128R1Field.square(x30, x31); SecP128R1Field.multiply(x31, x1, x31); int[] t1 = x31; SecP128R1Field.squareN(t1, 95, t1); int[] t2 = x30; SecP128R1Field.square(t1, t2); return Nat128.eq(x1, t2) ? new SecP128R1FieldElement(t1) : null; } public boolean equals(Object other) { if (other == this) { return true; } if (!(other instanceof SecP128R1FieldElement)) { return false; } SecP128R1FieldElement o = (SecP128R1FieldElement)other; return Nat128.eq(x, o.x); } public int hashCode() { return Q.hashCode() ^ Arrays.hashCode(x, 0, 4); } }