package org.bouncycastle.math.ec.custom.sec; import java.math.BigInteger; import org.bouncycastle.math.raw.Interleave; import org.bouncycastle.math.raw.Nat256; public class SecT233Field { private static final long M41 = -1L >>> 23; private static final long M59 = -1L >>> 5; public static void add(long[] x, long[] y, long[] z) { z[0] = x[0] ^ y[0]; z[1] = x[1] ^ y[1]; z[2] = x[2] ^ y[2]; z[3] = x[3] ^ y[3]; } public static void addExt(long[] xx, long[] yy, long[] zz) { zz[0] = xx[0] ^ yy[0]; zz[1] = xx[1] ^ yy[1]; zz[2] = xx[2] ^ yy[2]; zz[3] = xx[3] ^ yy[3]; zz[4] = xx[4] ^ yy[4]; zz[5] = xx[5] ^ yy[5]; zz[6] = xx[6] ^ yy[6]; zz[7] = xx[7] ^ yy[7]; } public static void addOne(long[] x, long[] z) { z[0] = x[0] ^ 1L; z[1] = x[1]; z[2] = x[2]; z[3] = x[3]; } public static long[] fromBigInteger(BigInteger x) { long[] z = Nat256.fromBigInteger64(x); reduce23(z, 0); return z; } public static void invert(long[] x, long[] z) { if (Nat256.isZero64(x)) { throw new IllegalStateException(); } // Itoh-Tsujii inversion long[] t0 = Nat256.create64(); long[] t1 = Nat256.create64(); square(x, t0); multiply(t0, x, t0); square(t0, t0); multiply(t0, x, t0); squareN(t0, 3, t1); multiply(t1, t0, t1); square(t1, t1); multiply(t1, x, t1); squareN(t1, 7, t0); multiply(t0, t1, t0); squareN(t0, 14, t1); multiply(t1, t0, t1); square(t1, t1); multiply(t1, x, t1); squareN(t1, 29, t0); multiply(t0, t1, t0); squareN(t0, 58, t1); multiply(t1, t0, t1); squareN(t1, 116, t0); multiply(t0, t1, t0); square(t0, z); } public static void multiply(long[] x, long[] y, long[] z) { long[] tt = Nat256.createExt64(); implMultiply(x, y, tt); reduce(tt, z); } public static void multiplyAddToExt(long[] x, long[] y, long[] zz) { long[] tt = Nat256.createExt64(); implMultiply(x, y, tt); addExt(zz, tt, zz); } public static void reduce(long[] xx, long[] z) { long x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3]; long x4 = xx[4], x5 = xx[5], x6 = xx[6], x7 = xx[7]; x3 ^= (x7 << 23); x4 ^= (x7 >>> 41) ^ (x7 << 33); x5 ^= (x7 >>> 31); x2 ^= (x6 << 23); x3 ^= (x6 >>> 41) ^ (x6 << 33); x4 ^= (x6 >>> 31); x1 ^= (x5 << 23); x2 ^= (x5 >>> 41) ^ (x5 << 33); x3 ^= (x5 >>> 31); x0 ^= (x4 << 23); x1 ^= (x4 >>> 41) ^ (x4 << 33); x2 ^= (x4 >>> 31); long t = x3 >>> 41; z[0] = x0 ^ t; z[1] = x1 ^ (t << 10); z[2] = x2; z[3] = x3 & M41; } public static void reduce23(long[] z, int zOff) { long z3 = z[zOff + 3], t = z3 >>> 41; z[zOff ] ^= t; z[zOff + 1] ^= (t << 10); z[zOff + 3] = z3 & M41; } public static void square(long[] x, long[] z) { long[] tt = Nat256.createExt64(); implSquare(x, tt); reduce(tt, z); } public static void squareAddToExt(long[] x, long[] zz) { long[] tt = Nat256.createExt64(); implSquare(x, tt); addExt(zz, tt, zz); } public static void squareN(long[] x, int n, long[] z) { // assert n > 0; long[] tt = Nat256.createExt64(); implSquare(x, tt); reduce(tt, z); while (--n > 0) { implSquare(z, tt); reduce(tt, z); } } public static void sqrt(long[] x, long[] z) { long u0, u1; u0 = Interleave.unshuffle(x[0]); u1 = Interleave.unshuffle(x[1]); long e0 = (u0 & 0x00000000FFFFFFFFL) | (u1 << 32); long c0 = (u0 >>> 32) | (u1 & 0xFFFFFFFF00000000L); u0 = Interleave.unshuffle(x[2]); u1 = Interleave.unshuffle(x[3]); long e1 = (u0 & 0x00000000FFFFFFFFL) | (u1 << 32); long c1 = (u0 >>> 32) | (u1 & 0xFFFFFFFF00000000L); long c2; c2 = (c1 >>> 27); c1 ^= (c0 >>> 27) | (c1 << 37); c0 ^= (c0 << 37); long[] tt = Nat256.createExt64(); int[] shifts = { 32, 117, 191 }; for (int i = 0; i < shifts.length; ++i) { int w = shifts[i] >>> 6, s = shifts[i] & 63; // assert s != 0; tt[w ] ^= (c0 << s); tt[w + 1] ^= (c1 << s) | (c0 >>> -s); tt[w + 2] ^= (c2 << s) | (c1 >>> -s); tt[w + 3] ^= (c2 >>> -s); } reduce(tt, z); z[0] ^= e0; z[1] ^= e1; } public static int trace(long[] x) { // Non-zero-trace bits: 0, 159 return (int)(x[0] ^ (x[2] >>> 31)) & 1; } protected static void implCompactExt(long[] zz) { long z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4], z5 = zz[5], z6 = zz[6], z7 = zz[7]; zz[0] = z0 ^ (z1 << 59); zz[1] = (z1 >>> 5) ^ (z2 << 54); zz[2] = (z2 >>> 10) ^ (z3 << 49); zz[3] = (z3 >>> 15) ^ (z4 << 44); zz[4] = (z4 >>> 20) ^ (z5 << 39); zz[5] = (z5 >>> 25) ^ (z6 << 34); zz[6] = (z6 >>> 30) ^ (z7 << 29); zz[7] = (z7 >>> 35); } protected static void implExpand(long[] x, long[] z) { long x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3]; z[0] = x0 & M59; z[1] = ((x0 >>> 59) ^ (x1 << 5)) & M59; z[2] = ((x1 >>> 54) ^ (x2 << 10)) & M59; z[3] = ((x2 >>> 49) ^ (x3 << 15)); } protected static void implMultiply(long[] x, long[] y, long[] zz) { /* * "Two-level seven-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein. */ long[] f = new long[4], g = new long[4]; implExpand(x, f); implExpand(y, g); implMulwAcc(f[0], g[0], zz, 0); implMulwAcc(f[1], g[1], zz, 1); implMulwAcc(f[2], g[2], zz, 2); implMulwAcc(f[3], g[3], zz, 3); // U *= (1 - t^n) for (int i = 5; i > 0; --i) { zz[i] ^= zz[i - 1]; } implMulwAcc(f[0] ^ f[1], g[0] ^ g[1], zz, 1); implMulwAcc(f[2] ^ f[3], g[2] ^ g[3], zz, 3); // V *= (1 - t^2n) for (int i = 7; i > 1; --i) { zz[i] ^= zz[i - 2]; } // Double-length recursion { long c0 = f[0] ^ f[2], c1 = f[1] ^ f[3]; long d0 = g[0] ^ g[2], d1 = g[1] ^ g[3]; implMulwAcc(c0 ^ c1, d0 ^ d1, zz, 3); long[] t = new long[3]; implMulwAcc(c0, d0, t, 0); implMulwAcc(c1, d1, t, 1); long t0 = t[0], t1 = t[1], t2 = t[2]; zz[2] ^= t0; zz[3] ^= t0 ^ t1; zz[4] ^= t2 ^ t1; zz[5] ^= t2; } implCompactExt(zz); } protected static void implMulwAcc(long x, long y, long[] z, int zOff) { // assert x >>> 59 == 0; // assert y >>> 59 == 0; long[] u = new long[8]; // u[0] = 0; u[1] = y; u[2] = u[1] << 1; u[3] = u[2] ^ y; u[4] = u[2] << 1; u[5] = u[4] ^ y; u[6] = u[3] << 1; u[7] = u[6] ^ y; int j = (int)x; long g, h = 0, l = u[j & 7] ^ (u[(j >>> 3) & 7] << 3); int k = 54; do { j = (int)(x >>> k); g = u[j & 7] ^ u[(j >>> 3) & 7] << 3; l ^= (g << k); h ^= (g >>> -k); } while ((k -= 6) > 0); // assert h >>> 53 == 0; z[zOff ] ^= l & M59; z[zOff + 1] ^= (l >>> 59) ^ (h << 5); } protected static void implSquare(long[] x, long[] zz) { Interleave.expand64To128(x[0], zz, 0); Interleave.expand64To128(x[1], zz, 2); Interleave.expand64To128(x[2], zz, 4); long x3 = x[3]; zz[6] = Interleave.expand32to64((int)x3); zz[7] = Interleave.expand16to32((int)(x3 >>> 32)) & 0xFFFFFFFFL; } }