package org.bouncycastle.math.ec.custom.sec; import java.math.BigInteger; import org.bouncycastle.math.ec.ECFieldElement; import org.bouncycastle.math.raw.Mod; import org.bouncycastle.math.raw.Nat160; import org.bouncycastle.util.Arrays; public class SecP160R1FieldElement extends ECFieldElement { public static final BigInteger Q = SecP160R1Curve.q; protected int[] x; public SecP160R1FieldElement(BigInteger x) { if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0) { throw new IllegalArgumentException("x value invalid for SecP160R1FieldElement"); } this.x = SecP160R1Field.fromBigInteger(x); } public SecP160R1FieldElement() { this.x = Nat160.create(); } protected SecP160R1FieldElement(int[] x) { this.x = x; } public boolean isZero() { return Nat160.isZero(x); } public boolean isOne() { return Nat160.isOne(x); } public boolean testBitZero() { return Nat160.getBit(x, 0) == 1; } public BigInteger toBigInteger() { return Nat160.toBigInteger(x); } public String getFieldName() { return "SecP160R1Field"; } public int getFieldSize() { return Q.bitLength(); } public ECFieldElement add(ECFieldElement b) { int[] z = Nat160.create(); SecP160R1Field.add(x, ((SecP160R1FieldElement)b).x, z); return new SecP160R1FieldElement(z); } public ECFieldElement addOne() { int[] z = Nat160.create(); SecP160R1Field.addOne(x, z); return new SecP160R1FieldElement(z); } public ECFieldElement subtract(ECFieldElement b) { int[] z = Nat160.create(); SecP160R1Field.subtract(x, ((SecP160R1FieldElement)b).x, z); return new SecP160R1FieldElement(z); } public ECFieldElement multiply(ECFieldElement b) { int[] z = Nat160.create(); SecP160R1Field.multiply(x, ((SecP160R1FieldElement)b).x, z); return new SecP160R1FieldElement(z); } public ECFieldElement divide(ECFieldElement b) { // return multiply(b.invert()); int[] z = Nat160.create(); Mod.invert(SecP160R1Field.P, ((SecP160R1FieldElement)b).x, z); SecP160R1Field.multiply(z, x, z); return new SecP160R1FieldElement(z); } public ECFieldElement negate() { int[] z = Nat160.create(); SecP160R1Field.negate(x, z); return new SecP160R1FieldElement(z); } public ECFieldElement square() { int[] z = Nat160.create(); SecP160R1Field.square(x, z); return new SecP160R1FieldElement(z); } public ECFieldElement invert() { // return new SecP160R1FieldElement(toBigInteger().modInverse(Q)); int[] z = Nat160.create(); Mod.invert(SecP160R1Field.P, x, z); return new SecP160R1FieldElement(z); } // D.1.4 91 /** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public ECFieldElement sqrt() { /* * Raise this element to the exponent 2^158 - 2^29 * * Breaking up the exponent's binary representation into "repunits", we get: * { 129 1s } { 29 0s } * * Therefore we need an addition chain containing 129 (the length of the repunit) We use: * 1, 2, 4, 8, 16, 32, 64, 128, [129] */ int[] x1 = this.x; if (Nat160.isZero(x1) || Nat160.isOne(x1)) { return this; } int[] x2 = Nat160.create(); SecP160R1Field.square(x1, x2); SecP160R1Field.multiply(x2, x1, x2); int[] x4 = Nat160.create(); SecP160R1Field.squareN(x2, 2, x4); SecP160R1Field.multiply(x4, x2, x4); int[] x8 = x2; SecP160R1Field.squareN(x4, 4, x8); SecP160R1Field.multiply(x8, x4, x8); int[] x16 = x4; SecP160R1Field.squareN(x8, 8, x16); SecP160R1Field.multiply(x16, x8, x16); int[] x32 = x8; SecP160R1Field.squareN(x16, 16, x32); SecP160R1Field.multiply(x32, x16, x32); int[] x64 = x16; SecP160R1Field.squareN(x32, 32, x64); SecP160R1Field.multiply(x64, x32, x64); int[] x128 = x32; SecP160R1Field.squareN(x64, 64, x128); SecP160R1Field.multiply(x128, x64, x128); int[] x129 = x64; SecP160R1Field.square(x128, x129); SecP160R1Field.multiply(x129, x1, x129); int[] t1 = x129; SecP160R1Field.squareN(t1, 29, t1); int[] t2 = x128; SecP160R1Field.square(t1, t2); return Nat160.eq(x1, t2) ? new SecP160R1FieldElement(t1) : null; } public boolean equals(Object other) { if (other == this) { return true; } if (!(other instanceof SecP160R1FieldElement)) { return false; } SecP160R1FieldElement o = (SecP160R1FieldElement)other; return Nat160.eq(x, o.x); } public int hashCode() { return Q.hashCode() ^ Arrays.hashCode(x, 0, 5); } }