package org.bouncycastle.math.ec.custom.sec; import java.math.BigInteger; import org.bouncycastle.math.ec.ECFieldElement; import org.bouncycastle.math.raw.Mod; import org.bouncycastle.math.raw.Nat224; import org.bouncycastle.util.Arrays; public class SecP224K1FieldElement extends ECFieldElement { public static final BigInteger Q = SecP224K1Curve.q; // Calculated as ECConstants.TWO.modPow(Q.shiftRight(2), Q) private static final int[] PRECOMP_POW2 = new int[]{ 0x33bfd202, 0xdcfad133, 0x2287624a, 0xc3811ba8, 0xa85558fc, 0x1eaef5d7, 0x8edf154c }; protected int[] x; public SecP224K1FieldElement(BigInteger x) { if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0) { throw new IllegalArgumentException("x value invalid for SecP224K1FieldElement"); } this.x = SecP224K1Field.fromBigInteger(x); } public SecP224K1FieldElement() { this.x = Nat224.create(); } protected SecP224K1FieldElement(int[] x) { this.x = x; } public boolean isZero() { return Nat224.isZero(x); } public boolean isOne() { return Nat224.isOne(x); } public boolean testBitZero() { return Nat224.getBit(x, 0) == 1; } public BigInteger toBigInteger() { return Nat224.toBigInteger(x); } public String getFieldName() { return "SecP224K1Field"; } public int getFieldSize() { return Q.bitLength(); } public ECFieldElement add(ECFieldElement b) { int[] z = Nat224.create(); SecP224K1Field.add(x, ((SecP224K1FieldElement)b).x, z); return new SecP224K1FieldElement(z); } public ECFieldElement addOne() { int[] z = Nat224.create(); SecP224K1Field.addOne(x, z); return new SecP224K1FieldElement(z); } public ECFieldElement subtract(ECFieldElement b) { int[] z = Nat224.create(); SecP224K1Field.subtract(x, ((SecP224K1FieldElement)b).x, z); return new SecP224K1FieldElement(z); } public ECFieldElement multiply(ECFieldElement b) { int[] z = Nat224.create(); SecP224K1Field.multiply(x, ((SecP224K1FieldElement)b).x, z); return new SecP224K1FieldElement(z); } public ECFieldElement divide(ECFieldElement b) { // return multiply(b.invert()); int[] z = Nat224.create(); Mod.invert(SecP224K1Field.P, ((SecP224K1FieldElement)b).x, z); SecP224K1Field.multiply(z, x, z); return new SecP224K1FieldElement(z); } public ECFieldElement negate() { int[] z = Nat224.create(); SecP224K1Field.negate(x, z); return new SecP224K1FieldElement(z); } public ECFieldElement square() { int[] z = Nat224.create(); SecP224K1Field.square(x, z); return new SecP224K1FieldElement(z); } public ECFieldElement invert() { // return new SecP224K1FieldElement(toBigInteger().modInverse(Q)); int[] z = Nat224.create(); Mod.invert(SecP224K1Field.P, x, z); return new SecP224K1FieldElement(z); } // D.1.4 91 /** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public ECFieldElement sqrt() { /* * Q == 8m + 5, so we use Pocklington's method for this case. * * First, raise this element to the exponent 2^221 - 2^29 - 2^9 - 2^8 - 2^6 - 2^4 - 2^1 (i.e. m + 1) * * Breaking up the exponent's binary representation into "repunits", we get: * { 191 1s } { 1 0s } { 19 1s } { 2 0s } { 1 1s } { 1 0s} { 1 1s } { 1 0s} { 3 1s } { 1 0s} * * Therefore we need an addition chain containing 1, 3, 19, 191 (the lengths of the repunits) * We use: [1], 2, [3], 4, 8, 11, [19], 23, 42, 84, 107, [191] */ int[] x1 = this.x; if (Nat224.isZero(x1) || Nat224.isOne(x1)) { return this; } int[] x2 = Nat224.create(); SecP224K1Field.square(x1, x2); SecP224K1Field.multiply(x2, x1, x2); int[] x3 = x2; SecP224K1Field.square(x2, x3); SecP224K1Field.multiply(x3, x1, x3); int[] x4 = Nat224.create(); SecP224K1Field.square(x3, x4); SecP224K1Field.multiply(x4, x1, x4); int[] x8 = Nat224.create(); SecP224K1Field.squareN(x4, 4, x8); SecP224K1Field.multiply(x8, x4, x8); int[] x11 = Nat224.create(); SecP224K1Field.squareN(x8, 3, x11); SecP224K1Field.multiply(x11, x3, x11); int[] x19 = x11; SecP224K1Field.squareN(x11, 8, x19); SecP224K1Field.multiply(x19, x8, x19); int[] x23 = x8; SecP224K1Field.squareN(x19, 4, x23); SecP224K1Field.multiply(x23, x4, x23); int[] x42 = x4; SecP224K1Field.squareN(x23, 19, x42); SecP224K1Field.multiply(x42, x19, x42); int[] x84 = Nat224.create(); SecP224K1Field.squareN(x42, 42, x84); SecP224K1Field.multiply(x84, x42, x84); int[] x107 = x42; SecP224K1Field.squareN(x84, 23, x107); SecP224K1Field.multiply(x107, x23, x107); int[] x191 = x23; SecP224K1Field.squareN(x107, 84, x191); SecP224K1Field.multiply(x191, x84, x191); int[] t1 = x191; SecP224K1Field.squareN(t1, 20, t1); SecP224K1Field.multiply(t1, x19, t1); SecP224K1Field.squareN(t1, 3, t1); SecP224K1Field.multiply(t1, x1, t1); SecP224K1Field.squareN(t1, 2, t1); SecP224K1Field.multiply(t1, x1, t1); SecP224K1Field.squareN(t1, 4, t1); SecP224K1Field.multiply(t1, x3, t1); SecP224K1Field.square(t1, t1); int[] t2 = x84; SecP224K1Field.square(t1, t2); if (Nat224.eq(x1, t2)) { return new SecP224K1FieldElement(t1); } /* * If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess, * which is ((4x)^(m + 1))/2 mod Q */ SecP224K1Field.multiply(t1, PRECOMP_POW2, t1); SecP224K1Field.square(t1, t2); if (Nat224.eq(x1, t2)) { return new SecP224K1FieldElement(t1); } return null; } public boolean equals(Object other) { if (other == this) { return true; } if (!(other instanceof SecP224K1FieldElement)) { return false; } SecP224K1FieldElement o = (SecP224K1FieldElement)other; return Nat224.eq(x, o.x); } public int hashCode() { return Q.hashCode() ^ Arrays.hashCode(x, 0, 7); } }