package org.bouncycastle.math.ec.custom.sec; import org.bouncycastle.math.ec.ECConstants; import org.bouncycastle.math.ec.ECCurve; import org.bouncycastle.math.ec.ECFieldElement; import org.bouncycastle.math.ec.ECPoint; import org.bouncycastle.math.ec.ECPoint.AbstractF2m; public class SecT239K1Point extends AbstractF2m { /** * @deprecated Use ECCurve.createPoint to construct points */ public SecT239K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y) { this(curve, x, y, false); } /** * @deprecated per-point compression property will be removed, refer {@link #getEncoded(boolean)} */ public SecT239K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, boolean withCompression) { super(curve, x, y); if ((x == null) != (y == null)) { throw new IllegalArgumentException("Exactly one of the field elements is null"); } this.withCompression = withCompression; } SecT239K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, boolean withCompression) { super(curve, x, y, zs); this.withCompression = withCompression; } protected ECPoint detach() { return new SecT239K1Point(null, this.getAffineXCoord(), this.getAffineYCoord()); // earlier JDK } public ECFieldElement getYCoord() { ECFieldElement X = x, L = y; if (this.isInfinity() || X.isZero()) { return L; } // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly ECFieldElement Y = L.add(X).multiply(X); ECFieldElement Z = zs[0]; if (!Z.isOne()) { Y = Y.divide(Z); } return Y; } protected boolean getCompressionYTilde() { ECFieldElement X = this.getRawXCoord(); if (X.isZero()) { return false; } ECFieldElement Y = this.getRawYCoord(); // Y is actually Lambda (X + Y/X) here return Y.testBitZero() != X.testBitZero(); } public ECPoint add(ECPoint b) { if (this.isInfinity()) { return b; } if (b.isInfinity()) { return this; } ECCurve curve = this.getCurve(); ECFieldElement X1 = this.x; ECFieldElement X2 = b.getRawXCoord(); if (X1.isZero()) { if (X2.isZero()) { return curve.getInfinity(); } return b.add(this); } ECFieldElement L1 = this.y, Z1 = this.zs[0]; ECFieldElement L2 = b.getRawYCoord(), Z2 = b.getZCoord(0); boolean Z1IsOne = Z1.isOne(); ECFieldElement U2 = X2, S2 = L2; if (!Z1IsOne) { U2 = U2.multiply(Z1); S2 = S2.multiply(Z1); } boolean Z2IsOne = Z2.isOne(); ECFieldElement U1 = X1, S1 = L1; if (!Z2IsOne) { U1 = U1.multiply(Z2); S1 = S1.multiply(Z2); } ECFieldElement A = S1.add(S2); ECFieldElement B = U1.add(U2); if (B.isZero()) { if (A.isZero()) { return twice(); } return curve.getInfinity(); } ECFieldElement X3, L3, Z3; if (X2.isZero()) { // TODO This can probably be optimized quite a bit ECPoint p = this.normalize(); X1 = p.getXCoord(); ECFieldElement Y1 = p.getYCoord(); ECFieldElement Y2 = L2; ECFieldElement L = Y1.add(Y2).divide(X1); X3 = L.square().add(L).add(X1); if (X3.isZero()) { return new SecT239K1Point(curve, X3, curve.getB(), this.withCompression); } ECFieldElement Y3 = L.multiply(X1.add(X3)).add(X3).add(Y1); L3 = Y3.divide(X3).add(X3); Z3 = curve.fromBigInteger(ECConstants.ONE); } else { B = B.square(); ECFieldElement AU1 = A.multiply(U1); ECFieldElement AU2 = A.multiply(U2); X3 = AU1.multiply(AU2); if (X3.isZero()) { return new SecT239K1Point(curve, X3, curve.getB(), this.withCompression); } ECFieldElement ABZ2 = A.multiply(B); if (!Z2IsOne) { ABZ2 = ABZ2.multiply(Z2); } L3 = AU2.add(B).squarePlusProduct(ABZ2, L1.add(Z1)); Z3 = ABZ2; if (!Z1IsOne) { Z3 = Z3.multiply(Z1); } } return new SecT239K1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression); } public ECPoint twice() { if (this.isInfinity()) { return this; } ECCurve curve = this.getCurve(); ECFieldElement X1 = this.x; if (X1.isZero()) { // A point with X == 0 is it's own additive inverse return curve.getInfinity(); } ECFieldElement L1 = this.y, Z1 = this.zs[0]; boolean Z1IsOne = Z1.isOne(); ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.square(); ECFieldElement T; if (Z1IsOne) { T = L1.square().add(L1); } else { T = L1.add(Z1).multiply(L1); } if (T.isZero()) { return new SecT239K1Point(curve, T, curve.getB(), withCompression); } ECFieldElement X3 = T.square(); ECFieldElement Z3 = Z1IsOne ? T : T.multiply(Z1Sq); ECFieldElement t1 = L1.add(X1).square(); ECFieldElement t2 = Z1IsOne ? Z1 : Z1Sq.square(); ECFieldElement L3 = t1.add(T).add(Z1Sq).multiply(t1).add(t2).add(X3).add(Z3); return new SecT239K1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression); } public ECPoint twicePlus(ECPoint b) { if (this.isInfinity()) { return b; } if (b.isInfinity()) { return twice(); } ECCurve curve = this.getCurve(); ECFieldElement X1 = this.x; if (X1.isZero()) { // A point with X == 0 is it's own additive inverse return b; } // NOTE: twicePlus() only optimized for lambda-affine argument ECFieldElement X2 = b.getRawXCoord(), Z2 = b.getZCoord(0); if (X2.isZero() || !Z2.isOne()) { return twice().add(b); } ECFieldElement L1 = this.y, Z1 = this.zs[0]; ECFieldElement L2 = b.getRawYCoord(); ECFieldElement X1Sq = X1.square(); ECFieldElement L1Sq = L1.square(); ECFieldElement Z1Sq = Z1.square(); ECFieldElement L1Z1 = L1.multiply(Z1); ECFieldElement T = L1Sq.add(L1Z1); ECFieldElement L2plus1 = L2.addOne(); ECFieldElement A = L2plus1.multiply(Z1Sq).add(L1Sq).multiplyPlusProduct(T, X1Sq, Z1Sq); ECFieldElement X2Z1Sq = X2.multiply(Z1Sq); ECFieldElement B = X2Z1Sq.add(T).square(); if (B.isZero()) { if (A.isZero()) { return b.twice(); } return curve.getInfinity(); } if (A.isZero()) { return new SecT239K1Point(curve, A, curve.getB(), withCompression); } ECFieldElement X3 = A.square().multiply(X2Z1Sq); ECFieldElement Z3 = A.multiply(B).multiply(Z1Sq); ECFieldElement L3 = A.add(B).square().multiplyPlusProduct(T, L2plus1, Z3); return new SecT239K1Point(curve, X3, L3, new ECFieldElement[]{ Z3 }, this.withCompression); } public ECPoint negate() { if (this.isInfinity()) { return this; } ECFieldElement X = this.x; if (X.isZero()) { return this; } // L is actually Lambda (X + Y/X) here ECFieldElement L = this.y, Z = this.zs[0]; return new SecT239K1Point(curve, X, L.add(Z), new ECFieldElement[]{ Z }, this.withCompression); } }