/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.hardware.camera2; import android.annotation.NonNull; import android.annotation.Nullable; import android.hardware.camera2.impl.CameraMetadataNative; import android.hardware.camera2.impl.CaptureResultExtras; import android.hardware.camera2.impl.PublicKey; import android.hardware.camera2.impl.SyntheticKey; import android.hardware.camera2.utils.TypeReference; import android.util.Log; import android.util.Rational; import java.util.List; /** * <p>The subset of the results of a single image capture from the image sensor.</p> * * <p>Contains a subset of the final configuration for the capture hardware (sensor, lens, * flash), the processing pipeline, the control algorithms, and the output * buffers.</p> * * <p>CaptureResults are produced by a {@link CameraDevice} after processing a * {@link CaptureRequest}. All properties listed for capture requests can also * be queried on the capture result, to determine the final values used for * capture. The result also includes additional metadata about the state of the * camera device during the capture.</p> * * <p>Not all properties returned by {@link CameraCharacteristics#getAvailableCaptureResultKeys()} * are necessarily available. Some results are {@link CaptureResult partial} and will * not have every key set. Only {@link TotalCaptureResult total} results are guaranteed to have * every key available that was enabled by the request.</p> * * <p>{@link CaptureResult} objects are immutable.</p> * */ public class CaptureResult extends CameraMetadata<CaptureResult.Key<?>> { private static final String TAG = "CaptureResult"; private static final boolean VERBOSE = false; /** * A {@code Key} is used to do capture result field lookups with * {@link CaptureResult#get}. * * <p>For example, to get the timestamp corresponding to the exposure of the first row: * <code><pre> * long timestamp = captureResult.get(CaptureResult.SENSOR_TIMESTAMP); * </pre></code> * </p> * * <p>To enumerate over all possible keys for {@link CaptureResult}, see * {@link CameraCharacteristics#getAvailableCaptureResultKeys}.</p> * * @see CaptureResult#get * @see CameraCharacteristics#getAvailableCaptureResultKeys */ public final static class Key<T> { private final CameraMetadataNative.Key<T> mKey; /** * Visible for testing and vendor extensions only. * * @hide */ public Key(String name, Class<T> type) { mKey = new CameraMetadataNative.Key<T>(name, type); } /** * Visible for testing and vendor extensions only. * * @hide */ public Key(String name, TypeReference<T> typeReference) { mKey = new CameraMetadataNative.Key<T>(name, typeReference); } /** * Return a camelCase, period separated name formatted like: * {@code "root.section[.subsections].name"}. * * <p>Built-in keys exposed by the Android SDK are always prefixed with {@code "android."}; * keys that are device/platform-specific are prefixed with {@code "com."}.</p> * * <p>For example, {@code CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP} would * have a name of {@code "android.scaler.streamConfigurationMap"}; whereas a device * specific key might look like {@code "com.google.nexus.data.private"}.</p> * * @return String representation of the key name */ @NonNull public String getName() { return mKey.getName(); } /** * {@inheritDoc} */ @Override public final int hashCode() { return mKey.hashCode(); } /** * {@inheritDoc} */ @SuppressWarnings("unchecked") @Override public final boolean equals(Object o) { return o instanceof Key && ((Key<T>)o).mKey.equals(mKey); } /** * Return this {@link Key} as a string representation. * * <p>{@code "CaptureResult.Key(%s)"}, where {@code %s} represents * the name of this key as returned by {@link #getName}.</p> * * @return string representation of {@link Key} */ @NonNull @Override public String toString() { return String.format("CaptureResult.Key(%s)", mKey.getName()); } /** * Visible for CameraMetadataNative implementation only; do not use. * * TODO: Make this private or remove it altogether. * * @hide */ public CameraMetadataNative.Key<T> getNativeKey() { return mKey; } @SuppressWarnings({ "unchecked" }) /*package*/ Key(CameraMetadataNative.Key<?> nativeKey) { mKey = (CameraMetadataNative.Key<T>) nativeKey; } } private final CameraMetadataNative mResults; private final CaptureRequest mRequest; private final int mSequenceId; private final long mFrameNumber; /** * Takes ownership of the passed-in properties object * * <p>For internal use only</p> * @hide */ public CaptureResult(CameraMetadataNative results, CaptureRequest parent, CaptureResultExtras extras) { if (results == null) { throw new IllegalArgumentException("results was null"); } if (parent == null) { throw new IllegalArgumentException("parent was null"); } if (extras == null) { throw new IllegalArgumentException("extras was null"); } mResults = CameraMetadataNative.move(results); if (mResults.isEmpty()) { throw new AssertionError("Results must not be empty"); } mRequest = parent; mSequenceId = extras.getRequestId(); mFrameNumber = extras.getFrameNumber(); } /** * Returns a copy of the underlying {@link CameraMetadataNative}. * @hide */ public CameraMetadataNative getNativeCopy() { return new CameraMetadataNative(mResults); } /** * Creates a request-less result. * * <p><strong>For testing only.</strong></p> * @hide */ public CaptureResult(CameraMetadataNative results, int sequenceId) { if (results == null) { throw new IllegalArgumentException("results was null"); } mResults = CameraMetadataNative.move(results); if (mResults.isEmpty()) { throw new AssertionError("Results must not be empty"); } mRequest = null; mSequenceId = sequenceId; mFrameNumber = -1; } /** * Get a capture result field value. * * <p>The field definitions can be found in {@link CaptureResult}.</p> * * <p>Querying the value for the same key more than once will return a value * which is equal to the previous queried value.</p> * * @throws IllegalArgumentException if the key was not valid * * @param key The result field to read. * @return The value of that key, or {@code null} if the field is not set. */ @Nullable public <T> T get(Key<T> key) { T value = mResults.get(key); if (VERBOSE) Log.v(TAG, "#get for Key = " + key.getName() + ", returned value = " + value); return value; } /** * {@inheritDoc} * @hide */ @SuppressWarnings("unchecked") @Override protected <T> T getProtected(Key<?> key) { return (T) mResults.get(key); } /** * {@inheritDoc} * @hide */ @SuppressWarnings("unchecked") @Override protected Class<Key<?>> getKeyClass() { Object thisClass = Key.class; return (Class<Key<?>>)thisClass; } /** * Dumps the native metadata contents to logcat. * * <p>Visibility for testing/debugging only. The results will not * include any synthesized keys, as they are invisible to the native layer.</p> * * @hide */ public void dumpToLog() { mResults.dumpToLog(); } /** * {@inheritDoc} */ @Override @NonNull public List<Key<?>> getKeys() { // Force the javadoc for this function to show up on the CaptureResult page return super.getKeys(); } /** * Get the request associated with this result. * * <p>Whenever a request has been fully or partially captured, with * {@link CameraCaptureSession.CaptureCallback#onCaptureCompleted} or * {@link CameraCaptureSession.CaptureCallback#onCaptureProgressed}, the {@code result}'s * {@code getRequest()} will return that {@code request}. * </p> * * <p>For example, * <code><pre>cameraDevice.capture(someRequest, new CaptureCallback() { * {@literal @}Override * void onCaptureCompleted(CaptureRequest myRequest, CaptureResult myResult) { * assert(myResult.getRequest.equals(myRequest) == true); * } * }, null); * </code></pre> * </p> * * @return The request associated with this result. Never {@code null}. */ @NonNull public CaptureRequest getRequest() { return mRequest; } /** * Get the frame number associated with this result. * * <p>Whenever a request has been processed, regardless of failure or success, * it gets a unique frame number assigned to its future result/failure.</p> * * <p>For the same type of request (capturing from the camera device or reprocessing), this * value monotonically increments, starting with 0, for every new result or failure and the * scope is the lifetime of the {@link CameraDevice}. Between different types of requests, * the frame number may not monotonically increment. For example, the frame number of a newer * reprocess result may be smaller than the frame number of an older result of capturing new * images from the camera device, but the frame number of a newer reprocess result will never be * smaller than the frame number of an older reprocess result.</p> * * @return The frame number * * @see CameraDevice#createCaptureRequest * @see CameraDevice#createReprocessCaptureRequest */ public long getFrameNumber() { return mFrameNumber; } /** * The sequence ID for this failure that was returned by the * {@link CameraCaptureSession#capture} family of functions. * * <p>The sequence ID is a unique monotonically increasing value starting from 0, * incremented every time a new group of requests is submitted to the CameraDevice.</p> * * @return int The ID for the sequence of requests that this capture result is a part of * * @see CameraDevice.CaptureCallback#onCaptureSequenceCompleted * @see CameraDevice.CaptureCallback#onCaptureSequenceAborted */ public int getSequenceId() { return mSequenceId; } /*@O~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~ * The key entries below this point are generated from metadata * definitions in /system/media/camera/docs. Do not modify by hand or * modify the comment blocks at the start or end. *~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~*/ /** * <p>The mode control selects how the image data is converted from the * sensor's native color into linear sRGB color.</p> * <p>When auto-white balance (AWB) is enabled with {@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode}, this * control is overridden by the AWB routine. When AWB is disabled, the * application controls how the color mapping is performed.</p> * <p>We define the expected processing pipeline below. For consistency * across devices, this is always the case with TRANSFORM_MATRIX.</p> * <p>When either FULL or HIGH_QUALITY is used, the camera device may * do additional processing but {@link CaptureRequest#COLOR_CORRECTION_GAINS android.colorCorrection.gains} and * {@link CaptureRequest#COLOR_CORRECTION_TRANSFORM android.colorCorrection.transform} will still be provided by the * camera device (in the results) and be roughly correct.</p> * <p>Switching to TRANSFORM_MATRIX and using the data provided from * FAST or HIGH_QUALITY will yield a picture with the same white point * as what was produced by the camera device in the earlier frame.</p> * <p>The expected processing pipeline is as follows:</p> * <p><img alt="White balance processing pipeline" src="../../../../images/camera2/metadata/android.colorCorrection.mode/processing_pipeline.png" /></p> * <p>The white balance is encoded by two values, a 4-channel white-balance * gain vector (applied in the Bayer domain), and a 3x3 color transform * matrix (applied after demosaic).</p> * <p>The 4-channel white-balance gains are defined as:</p> * <pre><code>{@link CaptureRequest#COLOR_CORRECTION_GAINS android.colorCorrection.gains} = [ R G_even G_odd B ] * </code></pre> * <p>where <code>G_even</code> is the gain for green pixels on even rows of the * output, and <code>G_odd</code> is the gain for green pixels on the odd rows. * These may be identical for a given camera device implementation; if * the camera device does not support a separate gain for even/odd green * channels, it will use the <code>G_even</code> value, and write <code>G_odd</code> equal to * <code>G_even</code> in the output result metadata.</p> * <p>The matrices for color transforms are defined as a 9-entry vector:</p> * <pre><code>{@link CaptureRequest#COLOR_CORRECTION_TRANSFORM android.colorCorrection.transform} = [ I0 I1 I2 I3 I4 I5 I6 I7 I8 ] * </code></pre> * <p>which define a transform from input sensor colors, <code>P_in = [ r g b ]</code>, * to output linear sRGB, <code>P_out = [ r' g' b' ]</code>,</p> * <p>with colors as follows:</p> * <pre><code>r' = I0r + I1g + I2b * g' = I3r + I4g + I5b * b' = I6r + I7g + I8b * </code></pre> * <p>Both the input and output value ranges must match. Overflow/underflow * values are clipped to fit within the range.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #COLOR_CORRECTION_MODE_TRANSFORM_MATRIX TRANSFORM_MATRIX}</li> * <li>{@link #COLOR_CORRECTION_MODE_FAST FAST}</li> * <li>{@link #COLOR_CORRECTION_MODE_HIGH_QUALITY HIGH_QUALITY}</li> * </ul></p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#COLOR_CORRECTION_GAINS * @see CaptureRequest#COLOR_CORRECTION_TRANSFORM * @see CaptureRequest#CONTROL_AWB_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see #COLOR_CORRECTION_MODE_TRANSFORM_MATRIX * @see #COLOR_CORRECTION_MODE_FAST * @see #COLOR_CORRECTION_MODE_HIGH_QUALITY */ @PublicKey public static final Key<Integer> COLOR_CORRECTION_MODE = new Key<Integer>("android.colorCorrection.mode", int.class); /** * <p>A color transform matrix to use to transform * from sensor RGB color space to output linear sRGB color space.</p> * <p>This matrix is either set by the camera device when the request * {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} is not TRANSFORM_MATRIX, or * directly by the application in the request when the * {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} is TRANSFORM_MATRIX.</p> * <p>In the latter case, the camera device may round the matrix to account * for precision issues; the final rounded matrix should be reported back * in this matrix result metadata. The transform should keep the magnitude * of the output color values within <code>[0, 1.0]</code> (assuming input color * values is within the normalized range <code>[0, 1.0]</code>), or clipping may occur.</p> * <p>The valid range of each matrix element varies on different devices, but * values within [-1.5, 3.0] are guaranteed not to be clipped.</p> * <p><b>Units</b>: Unitless scale factors</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#COLOR_CORRECTION_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL */ @PublicKey public static final Key<android.hardware.camera2.params.ColorSpaceTransform> COLOR_CORRECTION_TRANSFORM = new Key<android.hardware.camera2.params.ColorSpaceTransform>("android.colorCorrection.transform", android.hardware.camera2.params.ColorSpaceTransform.class); /** * <p>Gains applying to Bayer raw color channels for * white-balance.</p> * <p>These per-channel gains are either set by the camera device * when the request {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} is not * TRANSFORM_MATRIX, or directly by the application in the * request when the {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} is * TRANSFORM_MATRIX.</p> * <p>The gains in the result metadata are the gains actually * applied by the camera device to the current frame.</p> * <p>The valid range of gains varies on different devices, but gains * between [1.0, 3.0] are guaranteed not to be clipped. Even if a given * device allows gains below 1.0, this is usually not recommended because * this can create color artifacts.</p> * <p><b>Units</b>: Unitless gain factors</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#COLOR_CORRECTION_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL */ @PublicKey public static final Key<android.hardware.camera2.params.RggbChannelVector> COLOR_CORRECTION_GAINS = new Key<android.hardware.camera2.params.RggbChannelVector>("android.colorCorrection.gains", android.hardware.camera2.params.RggbChannelVector.class); /** * <p>Mode of operation for the chromatic aberration correction algorithm.</p> * <p>Chromatic (color) aberration is caused by the fact that different wavelengths of light * can not focus on the same point after exiting from the lens. This metadata defines * the high level control of chromatic aberration correction algorithm, which aims to * minimize the chromatic artifacts that may occur along the object boundaries in an * image.</p> * <p>FAST/HIGH_QUALITY both mean that camera device determined aberration * correction will be applied. HIGH_QUALITY mode indicates that the camera device will * use the highest-quality aberration correction algorithms, even if it slows down * capture rate. FAST means the camera device will not slow down capture rate when * applying aberration correction.</p> * <p>LEGACY devices will always be in FAST mode.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #COLOR_CORRECTION_ABERRATION_MODE_OFF OFF}</li> * <li>{@link #COLOR_CORRECTION_ABERRATION_MODE_FAST FAST}</li> * <li>{@link #COLOR_CORRECTION_ABERRATION_MODE_HIGH_QUALITY HIGH_QUALITY}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES android.colorCorrection.availableAberrationModes}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES * @see #COLOR_CORRECTION_ABERRATION_MODE_OFF * @see #COLOR_CORRECTION_ABERRATION_MODE_FAST * @see #COLOR_CORRECTION_ABERRATION_MODE_HIGH_QUALITY */ @PublicKey public static final Key<Integer> COLOR_CORRECTION_ABERRATION_MODE = new Key<Integer>("android.colorCorrection.aberrationMode", int.class); /** * <p>The desired setting for the camera device's auto-exposure * algorithm's antibanding compensation.</p> * <p>Some kinds of lighting fixtures, such as some fluorescent * lights, flicker at the rate of the power supply frequency * (60Hz or 50Hz, depending on country). While this is * typically not noticeable to a person, it can be visible to * a camera device. If a camera sets its exposure time to the * wrong value, the flicker may become visible in the * viewfinder as flicker or in a final captured image, as a * set of variable-brightness bands across the image.</p> * <p>Therefore, the auto-exposure routines of camera devices * include antibanding routines that ensure that the chosen * exposure value will not cause such banding. The choice of * exposure time depends on the rate of flicker, which the * camera device can detect automatically, or the expected * rate can be selected by the application using this * control.</p> * <p>A given camera device may not support all of the possible * options for the antibanding mode. The * {@link CameraCharacteristics#CONTROL_AE_AVAILABLE_ANTIBANDING_MODES android.control.aeAvailableAntibandingModes} key contains * the available modes for a given camera device.</p> * <p>AUTO mode is the default if it is available on given * camera device. When AUTO mode is not available, the * default will be either 50HZ or 60HZ, and both 50HZ * and 60HZ will be available.</p> * <p>If manual exposure control is enabled (by setting * {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} or {@link CaptureRequest#CONTROL_MODE android.control.mode} to OFF), * then this setting has no effect, and the application must * ensure it selects exposure times that do not cause banding * issues. The {@link CaptureResult#STATISTICS_SCENE_FLICKER android.statistics.sceneFlicker} key can assist * the application in this.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_AE_ANTIBANDING_MODE_OFF OFF}</li> * <li>{@link #CONTROL_AE_ANTIBANDING_MODE_50HZ 50HZ}</li> * <li>{@link #CONTROL_AE_ANTIBANDING_MODE_60HZ 60HZ}</li> * <li>{@link #CONTROL_AE_ANTIBANDING_MODE_AUTO AUTO}</li> * </ul></p> * <p><b>Available values for this device:</b><br></p> * <p>{@link CameraCharacteristics#CONTROL_AE_AVAILABLE_ANTIBANDING_MODES android.control.aeAvailableAntibandingModes}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#CONTROL_AE_AVAILABLE_ANTIBANDING_MODES * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_MODE * @see CaptureResult#STATISTICS_SCENE_FLICKER * @see #CONTROL_AE_ANTIBANDING_MODE_OFF * @see #CONTROL_AE_ANTIBANDING_MODE_50HZ * @see #CONTROL_AE_ANTIBANDING_MODE_60HZ * @see #CONTROL_AE_ANTIBANDING_MODE_AUTO */ @PublicKey public static final Key<Integer> CONTROL_AE_ANTIBANDING_MODE = new Key<Integer>("android.control.aeAntibandingMode", int.class); /** * <p>Adjustment to auto-exposure (AE) target image * brightness.</p> * <p>The adjustment is measured as a count of steps, with the * step size defined by {@link CameraCharacteristics#CONTROL_AE_COMPENSATION_STEP android.control.aeCompensationStep} and the * allowed range by {@link CameraCharacteristics#CONTROL_AE_COMPENSATION_RANGE android.control.aeCompensationRange}.</p> * <p>For example, if the exposure value (EV) step is 0.333, '6' * will mean an exposure compensation of +2 EV; -3 will mean an * exposure compensation of -1 EV. One EV represents a doubling * of image brightness. Note that this control will only be * effective if {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} <code>!=</code> OFF. This control * will take effect even when {@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} <code>== true</code>.</p> * <p>In the event of exposure compensation value being changed, camera device * may take several frames to reach the newly requested exposure target. * During that time, {@link CaptureResult#CONTROL_AE_STATE android.control.aeState} field will be in the SEARCHING * state. Once the new exposure target is reached, {@link CaptureResult#CONTROL_AE_STATE android.control.aeState} will * change from SEARCHING to either CONVERGED, LOCKED (if AE lock is enabled), or * FLASH_REQUIRED (if the scene is too dark for still capture).</p> * <p><b>Units</b>: Compensation steps</p> * <p><b>Range of valid values:</b><br> * {@link CameraCharacteristics#CONTROL_AE_COMPENSATION_RANGE android.control.aeCompensationRange}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#CONTROL_AE_COMPENSATION_RANGE * @see CameraCharacteristics#CONTROL_AE_COMPENSATION_STEP * @see CaptureRequest#CONTROL_AE_LOCK * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureResult#CONTROL_AE_STATE */ @PublicKey public static final Key<Integer> CONTROL_AE_EXPOSURE_COMPENSATION = new Key<Integer>("android.control.aeExposureCompensation", int.class); /** * <p>Whether auto-exposure (AE) is currently locked to its latest * calculated values.</p> * <p>When set to <code>true</code> (ON), the AE algorithm is locked to its latest parameters, * and will not change exposure settings until the lock is set to <code>false</code> (OFF).</p> * <p>Note that even when AE is locked, the flash may be fired if * the {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} is ON_AUTO_FLASH / * ON_ALWAYS_FLASH / ON_AUTO_FLASH_REDEYE.</p> * <p>When {@link CaptureRequest#CONTROL_AE_EXPOSURE_COMPENSATION android.control.aeExposureCompensation} is changed, even if the AE lock * is ON, the camera device will still adjust its exposure value.</p> * <p>If AE precapture is triggered (see {@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger}) * when AE is already locked, the camera device will not change the exposure time * ({@link CaptureRequest#SENSOR_EXPOSURE_TIME android.sensor.exposureTime}) and sensitivity ({@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity}) * parameters. The flash may be fired if the {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} * is ON_AUTO_FLASH/ON_AUTO_FLASH_REDEYE and the scene is too dark. If the * {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} is ON_ALWAYS_FLASH, the scene may become overexposed. * Similarly, AE precapture trigger CANCEL has no effect when AE is already locked.</p> * <p>When an AE precapture sequence is triggered, AE unlock will not be able to unlock * the AE if AE is locked by the camera device internally during precapture metering * sequence In other words, submitting requests with AE unlock has no effect for an * ongoing precapture metering sequence. Otherwise, the precapture metering sequence * will never succeed in a sequence of preview requests where AE lock is always set * to <code>false</code>.</p> * <p>Since the camera device has a pipeline of in-flight requests, the settings that * get locked do not necessarily correspond to the settings that were present in the * latest capture result received from the camera device, since additional captures * and AE updates may have occurred even before the result was sent out. If an * application is switching between automatic and manual control and wishes to eliminate * any flicker during the switch, the following procedure is recommended:</p> * <ol> * <li>Starting in auto-AE mode:</li> * <li>Lock AE</li> * <li>Wait for the first result to be output that has the AE locked</li> * <li>Copy exposure settings from that result into a request, set the request to manual AE</li> * <li>Submit the capture request, proceed to run manual AE as desired.</li> * </ol> * <p>See {@link CaptureResult#CONTROL_AE_STATE android.control.aeState} for AE lock related state transition details.</p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_AE_EXPOSURE_COMPENSATION * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER * @see CaptureResult#CONTROL_AE_STATE * @see CaptureRequest#SENSOR_EXPOSURE_TIME * @see CaptureRequest#SENSOR_SENSITIVITY */ @PublicKey public static final Key<Boolean> CONTROL_AE_LOCK = new Key<Boolean>("android.control.aeLock", boolean.class); /** * <p>The desired mode for the camera device's * auto-exposure routine.</p> * <p>This control is only effective if {@link CaptureRequest#CONTROL_MODE android.control.mode} is * AUTO.</p> * <p>When set to any of the ON modes, the camera device's * auto-exposure routine is enabled, overriding the * application's selected exposure time, sensor sensitivity, * and frame duration ({@link CaptureRequest#SENSOR_EXPOSURE_TIME android.sensor.exposureTime}, * {@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity}, and * {@link CaptureRequest#SENSOR_FRAME_DURATION android.sensor.frameDuration}). If one of the FLASH modes * is selected, the camera device's flash unit controls are * also overridden.</p> * <p>The FLASH modes are only available if the camera device * has a flash unit ({@link CameraCharacteristics#FLASH_INFO_AVAILABLE android.flash.info.available} is <code>true</code>).</p> * <p>If flash TORCH mode is desired, this field must be set to * ON or OFF, and {@link CaptureRequest#FLASH_MODE android.flash.mode} set to TORCH.</p> * <p>When set to any of the ON modes, the values chosen by the * camera device auto-exposure routine for the overridden * fields for a given capture will be available in its * CaptureResult.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_AE_MODE_OFF OFF}</li> * <li>{@link #CONTROL_AE_MODE_ON ON}</li> * <li>{@link #CONTROL_AE_MODE_ON_AUTO_FLASH ON_AUTO_FLASH}</li> * <li>{@link #CONTROL_AE_MODE_ON_ALWAYS_FLASH ON_ALWAYS_FLASH}</li> * <li>{@link #CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE ON_AUTO_FLASH_REDEYE}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#CONTROL_AE_AVAILABLE_MODES android.control.aeAvailableModes}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#CONTROL_AE_AVAILABLE_MODES * @see CaptureRequest#CONTROL_MODE * @see CameraCharacteristics#FLASH_INFO_AVAILABLE * @see CaptureRequest#FLASH_MODE * @see CaptureRequest#SENSOR_EXPOSURE_TIME * @see CaptureRequest#SENSOR_FRAME_DURATION * @see CaptureRequest#SENSOR_SENSITIVITY * @see #CONTROL_AE_MODE_OFF * @see #CONTROL_AE_MODE_ON * @see #CONTROL_AE_MODE_ON_AUTO_FLASH * @see #CONTROL_AE_MODE_ON_ALWAYS_FLASH * @see #CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE */ @PublicKey public static final Key<Integer> CONTROL_AE_MODE = new Key<Integer>("android.control.aeMode", int.class); /** * <p>List of metering areas to use for auto-exposure adjustment.</p> * <p>Not available if {@link CameraCharacteristics#CONTROL_MAX_REGIONS_AE android.control.maxRegionsAe} is 0. * Otherwise will always be present.</p> * <p>The maximum number of regions supported by the device is determined by the value * of {@link CameraCharacteristics#CONTROL_MAX_REGIONS_AE android.control.maxRegionsAe}.</p> * <p>The coordinate system is based on the active pixel array, * with (0,0) being the top-left pixel in the active pixel array, and * ({@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.width - 1, * {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.height - 1) being the * bottom-right pixel in the active pixel array.</p> * <p>The weight must be within <code>[0, 1000]</code>, and represents a weight * for every pixel in the area. This means that a large metering area * with the same weight as a smaller area will have more effect in * the metering result. Metering areas can partially overlap and the * camera device will add the weights in the overlap region.</p> * <p>The weights are relative to weights of other exposure metering regions, so if only one * region is used, all non-zero weights will have the same effect. A region with 0 * weight is ignored.</p> * <p>If all regions have 0 weight, then no specific metering area needs to be used by the * camera device.</p> * <p>If the metering region is outside the used {@link CaptureRequest#SCALER_CROP_REGION android.scaler.cropRegion} returned in * capture result metadata, the camera device will ignore the sections outside the crop * region and output only the intersection rectangle as the metering region in the result * metadata. If the region is entirely outside the crop region, it will be ignored and * not reported in the result metadata.</p> * <p><b>Units</b>: Pixel coordinates within {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}</p> * <p><b>Range of valid values:</b><br> * Coordinates must be between <code>[(0,0), (width, height))</code> of * {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#CONTROL_MAX_REGIONS_AE * @see CaptureRequest#SCALER_CROP_REGION * @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE */ @PublicKey public static final Key<android.hardware.camera2.params.MeteringRectangle[]> CONTROL_AE_REGIONS = new Key<android.hardware.camera2.params.MeteringRectangle[]>("android.control.aeRegions", android.hardware.camera2.params.MeteringRectangle[].class); /** * <p>Range over which the auto-exposure routine can * adjust the capture frame rate to maintain good * exposure.</p> * <p>Only constrains auto-exposure (AE) algorithm, not * manual control of {@link CaptureRequest#SENSOR_EXPOSURE_TIME android.sensor.exposureTime} and * {@link CaptureRequest#SENSOR_FRAME_DURATION android.sensor.frameDuration}.</p> * <p><b>Units</b>: Frames per second (FPS)</p> * <p><b>Range of valid values:</b><br> * Any of the entries in {@link CameraCharacteristics#CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES android.control.aeAvailableTargetFpsRanges}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES * @see CaptureRequest#SENSOR_EXPOSURE_TIME * @see CaptureRequest#SENSOR_FRAME_DURATION */ @PublicKey public static final Key<android.util.Range<Integer>> CONTROL_AE_TARGET_FPS_RANGE = new Key<android.util.Range<Integer>>("android.control.aeTargetFpsRange", new TypeReference<android.util.Range<Integer>>() {{ }}); /** * <p>Whether the camera device will trigger a precapture * metering sequence when it processes this request.</p> * <p>This entry is normally set to IDLE, or is not * included at all in the request settings. When included and * set to START, the camera device will trigger the auto-exposure (AE) * precapture metering sequence.</p> * <p>When set to CANCEL, the camera device will cancel any active * precapture metering trigger, and return to its initial AE state. * If a precapture metering sequence is already completed, and the camera * device has implicitly locked the AE for subsequent still capture, the * CANCEL trigger will unlock the AE and return to its initial AE state.</p> * <p>The precapture sequence should be triggered before starting a * high-quality still capture for final metering decisions to * be made, and for firing pre-capture flash pulses to estimate * scene brightness and required final capture flash power, when * the flash is enabled.</p> * <p>Normally, this entry should be set to START for only a * single request, and the application should wait until the * sequence completes before starting a new one.</p> * <p>When a precapture metering sequence is finished, the camera device * may lock the auto-exposure routine internally to be able to accurately expose the * subsequent still capture image (<code>{@link CaptureRequest#CONTROL_CAPTURE_INTENT android.control.captureIntent} == STILL_CAPTURE</code>). * For this case, the AE may not resume normal scan if no subsequent still capture is * submitted. To ensure that the AE routine restarts normal scan, the application should * submit a request with <code>{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} == true</code>, followed by a request * with <code>{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} == false</code>, if the application decides not to submit a * still capture request after the precapture sequence completes. Alternatively, for * API level 23 or newer devices, the CANCEL can be used to unlock the camera device * internally locked AE if the application doesn't submit a still capture request after * the AE precapture trigger. Note that, the CANCEL was added in API level 23, and must not * be used in devices that have earlier API levels.</p> * <p>The exact effect of auto-exposure (AE) precapture trigger * depends on the current AE mode and state; see * {@link CaptureResult#CONTROL_AE_STATE android.control.aeState} for AE precapture state transition * details.</p> * <p>On LEGACY-level devices, the precapture trigger is not supported; * capturing a high-resolution JPEG image will automatically trigger a * precapture sequence before the high-resolution capture, including * potentially firing a pre-capture flash.</p> * <p>Using the precapture trigger and the auto-focus trigger {@link CaptureRequest#CONTROL_AF_TRIGGER android.control.afTrigger} * simultaneously is allowed. However, since these triggers often require cooperation between * the auto-focus and auto-exposure routines (for example, the may need to be enabled for a * focus sweep), the camera device may delay acting on a later trigger until the previous * trigger has been fully handled. This may lead to longer intervals between the trigger and * changes to {@link CaptureResult#CONTROL_AE_STATE android.control.aeState} indicating the start of the precapture sequence, for * example.</p> * <p>If both the precapture and the auto-focus trigger are activated on the same request, then * the camera device will complete them in the optimal order for that device.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_AE_PRECAPTURE_TRIGGER_IDLE IDLE}</li> * <li>{@link #CONTROL_AE_PRECAPTURE_TRIGGER_START START}</li> * <li>{@link #CONTROL_AE_PRECAPTURE_TRIGGER_CANCEL CANCEL}</li> * </ul></p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Limited capability</b> - * Present on all camera devices that report being at least {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED HARDWARE_LEVEL_LIMITED} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AE_LOCK * @see CaptureResult#CONTROL_AE_STATE * @see CaptureRequest#CONTROL_AF_TRIGGER * @see CaptureRequest#CONTROL_CAPTURE_INTENT * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see #CONTROL_AE_PRECAPTURE_TRIGGER_IDLE * @see #CONTROL_AE_PRECAPTURE_TRIGGER_START * @see #CONTROL_AE_PRECAPTURE_TRIGGER_CANCEL */ @PublicKey public static final Key<Integer> CONTROL_AE_PRECAPTURE_TRIGGER = new Key<Integer>("android.control.aePrecaptureTrigger", int.class); /** * <p>Current state of the auto-exposure (AE) algorithm.</p> * <p>Switching between or enabling AE modes ({@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode}) always * resets the AE state to INACTIVE. Similarly, switching between {@link CaptureRequest#CONTROL_MODE android.control.mode}, * or {@link CaptureRequest#CONTROL_SCENE_MODE android.control.sceneMode} if <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} == USE_SCENE_MODE</code> resets all * the algorithm states to INACTIVE.</p> * <p>The camera device can do several state transitions between two results, if it is * allowed by the state transition table. For example: INACTIVE may never actually be * seen in a result.</p> * <p>The state in the result is the state for this image (in sync with this image): if * AE state becomes CONVERGED, then the image data associated with this result should * be good to use.</p> * <p>Below are state transition tables for different AE modes.</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center"></td> * <td align="center">INACTIVE</td> * <td align="center">Camera device auto exposure algorithm is disabled</td> * </tr> * </tbody> * </table> * <p>When {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} is AE_MODE_ON_*:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center">Camera device initiates AE scan</td> * <td align="center">SEARCHING</td> * <td align="center">Values changing</td> * </tr> * <tr> * <td align="center">INACTIVE</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td> * <td align="center">LOCKED</td> * <td align="center">Values locked</td> * </tr> * <tr> * <td align="center">SEARCHING</td> * <td align="center">Camera device finishes AE scan</td> * <td align="center">CONVERGED</td> * <td align="center">Good values, not changing</td> * </tr> * <tr> * <td align="center">SEARCHING</td> * <td align="center">Camera device finishes AE scan</td> * <td align="center">FLASH_REQUIRED</td> * <td align="center">Converged but too dark w/o flash</td> * </tr> * <tr> * <td align="center">SEARCHING</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td> * <td align="center">LOCKED</td> * <td align="center">Values locked</td> * </tr> * <tr> * <td align="center">CONVERGED</td> * <td align="center">Camera device initiates AE scan</td> * <td align="center">SEARCHING</td> * <td align="center">Values changing</td> * </tr> * <tr> * <td align="center">CONVERGED</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td> * <td align="center">LOCKED</td> * <td align="center">Values locked</td> * </tr> * <tr> * <td align="center">FLASH_REQUIRED</td> * <td align="center">Camera device initiates AE scan</td> * <td align="center">SEARCHING</td> * <td align="center">Values changing</td> * </tr> * <tr> * <td align="center">FLASH_REQUIRED</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td> * <td align="center">LOCKED</td> * <td align="center">Values locked</td> * </tr> * <tr> * <td align="center">LOCKED</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is OFF</td> * <td align="center">SEARCHING</td> * <td align="center">Values not good after unlock</td> * </tr> * <tr> * <td align="center">LOCKED</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is OFF</td> * <td align="center">CONVERGED</td> * <td align="center">Values good after unlock</td> * </tr> * <tr> * <td align="center">LOCKED</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is OFF</td> * <td align="center">FLASH_REQUIRED</td> * <td align="center">Exposure good, but too dark</td> * </tr> * <tr> * <td align="center">PRECAPTURE</td> * <td align="center">Sequence done. {@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is OFF</td> * <td align="center">CONVERGED</td> * <td align="center">Ready for high-quality capture</td> * </tr> * <tr> * <td align="center">PRECAPTURE</td> * <td align="center">Sequence done. {@link CaptureRequest#CONTROL_AE_LOCK android.control.aeLock} is ON</td> * <td align="center">LOCKED</td> * <td align="center">Ready for high-quality capture</td> * </tr> * <tr> * <td align="center">LOCKED</td> * <td align="center">aeLock is ON and aePrecaptureTrigger is START</td> * <td align="center">LOCKED</td> * <td align="center">Precapture trigger is ignored when AE is already locked</td> * </tr> * <tr> * <td align="center">LOCKED</td> * <td align="center">aeLock is ON and aePrecaptureTrigger is CANCEL</td> * <td align="center">LOCKED</td> * <td align="center">Precapture trigger is ignored when AE is already locked</td> * </tr> * <tr> * <td align="center">Any state (excluding LOCKED)</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger} is START</td> * <td align="center">PRECAPTURE</td> * <td align="center">Start AE precapture metering sequence</td> * </tr> * <tr> * <td align="center">Any state (excluding LOCKED)</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger} is CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Currently active precapture metering sequence is canceled</td> * </tr> * </tbody> * </table> * <p>For the above table, the camera device may skip reporting any state changes that happen * without application intervention (i.e. mode switch, trigger, locking). Any state that * can be skipped in that manner is called a transient state.</p> * <p>For example, for above AE modes (AE_MODE_ON_*), in addition to the state transitions * listed in above table, it is also legal for the camera device to skip one or more * transient states between two results. See below table for examples:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center">Camera device finished AE scan</td> * <td align="center">CONVERGED</td> * <td align="center">Values are already good, transient states are skipped by camera device.</td> * </tr> * <tr> * <td align="center">Any state (excluding LOCKED)</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger} is START, sequence done</td> * <td align="center">FLASH_REQUIRED</td> * <td align="center">Converged but too dark w/o flash after a precapture sequence, transient states are skipped by camera device.</td> * </tr> * <tr> * <td align="center">Any state (excluding LOCKED)</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger} is START, sequence done</td> * <td align="center">CONVERGED</td> * <td align="center">Converged after a precapture sequence, transient states are skipped by camera device.</td> * </tr> * <tr> * <td align="center">Any state (excluding LOCKED)</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger} is CANCEL, converged</td> * <td align="center">FLASH_REQUIRED</td> * <td align="center">Converged but too dark w/o flash after a precapture sequence is canceled, transient states are skipped by camera device.</td> * </tr> * <tr> * <td align="center">Any state (excluding LOCKED)</td> * <td align="center">{@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger} is CANCEL, converged</td> * <td align="center">CONVERGED</td> * <td align="center">Converged after a precapture sequenceis canceled, transient states are skipped by camera device.</td> * </tr> * <tr> * <td align="center">CONVERGED</td> * <td align="center">Camera device finished AE scan</td> * <td align="center">FLASH_REQUIRED</td> * <td align="center">Converged but too dark w/o flash after a new scan, transient states are skipped by camera device.</td> * </tr> * <tr> * <td align="center">FLASH_REQUIRED</td> * <td align="center">Camera device finished AE scan</td> * <td align="center">CONVERGED</td> * <td align="center">Converged after a new scan, transient states are skipped by camera device.</td> * </tr> * </tbody> * </table> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_AE_STATE_INACTIVE INACTIVE}</li> * <li>{@link #CONTROL_AE_STATE_SEARCHING SEARCHING}</li> * <li>{@link #CONTROL_AE_STATE_CONVERGED CONVERGED}</li> * <li>{@link #CONTROL_AE_STATE_LOCKED LOCKED}</li> * <li>{@link #CONTROL_AE_STATE_FLASH_REQUIRED FLASH_REQUIRED}</li> * <li>{@link #CONTROL_AE_STATE_PRECAPTURE PRECAPTURE}</li> * </ul></p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Limited capability</b> - * Present on all camera devices that report being at least {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED HARDWARE_LEVEL_LIMITED} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AE_LOCK * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER * @see CaptureRequest#CONTROL_MODE * @see CaptureRequest#CONTROL_SCENE_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see #CONTROL_AE_STATE_INACTIVE * @see #CONTROL_AE_STATE_SEARCHING * @see #CONTROL_AE_STATE_CONVERGED * @see #CONTROL_AE_STATE_LOCKED * @see #CONTROL_AE_STATE_FLASH_REQUIRED * @see #CONTROL_AE_STATE_PRECAPTURE */ @PublicKey public static final Key<Integer> CONTROL_AE_STATE = new Key<Integer>("android.control.aeState", int.class); /** * <p>Whether auto-focus (AF) is currently enabled, and what * mode it is set to.</p> * <p>Only effective if {@link CaptureRequest#CONTROL_MODE android.control.mode} = AUTO and the lens is not fixed focus * (i.e. <code>{@link CameraCharacteristics#LENS_INFO_MINIMUM_FOCUS_DISTANCE android.lens.info.minimumFocusDistance} > 0</code>). Also note that * when {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} is OFF, the behavior of AF is device * dependent. It is recommended to lock AF by using {@link CaptureRequest#CONTROL_AF_TRIGGER android.control.afTrigger} before * setting {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} to OFF, or set AF mode to OFF when AE is OFF.</p> * <p>If the lens is controlled by the camera device auto-focus algorithm, * the camera device will report the current AF status in {@link CaptureResult#CONTROL_AF_STATE android.control.afState} * in result metadata.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_AF_MODE_OFF OFF}</li> * <li>{@link #CONTROL_AF_MODE_AUTO AUTO}</li> * <li>{@link #CONTROL_AF_MODE_MACRO MACRO}</li> * <li>{@link #CONTROL_AF_MODE_CONTINUOUS_VIDEO CONTINUOUS_VIDEO}</li> * <li>{@link #CONTROL_AF_MODE_CONTINUOUS_PICTURE CONTINUOUS_PICTURE}</li> * <li>{@link #CONTROL_AF_MODE_EDOF EDOF}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#CONTROL_AF_AVAILABLE_MODES android.control.afAvailableModes}</p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CameraCharacteristics#CONTROL_AF_AVAILABLE_MODES * @see CaptureResult#CONTROL_AF_STATE * @see CaptureRequest#CONTROL_AF_TRIGGER * @see CaptureRequest#CONTROL_MODE * @see CameraCharacteristics#LENS_INFO_MINIMUM_FOCUS_DISTANCE * @see #CONTROL_AF_MODE_OFF * @see #CONTROL_AF_MODE_AUTO * @see #CONTROL_AF_MODE_MACRO * @see #CONTROL_AF_MODE_CONTINUOUS_VIDEO * @see #CONTROL_AF_MODE_CONTINUOUS_PICTURE * @see #CONTROL_AF_MODE_EDOF */ @PublicKey public static final Key<Integer> CONTROL_AF_MODE = new Key<Integer>("android.control.afMode", int.class); /** * <p>List of metering areas to use for auto-focus.</p> * <p>Not available if {@link CameraCharacteristics#CONTROL_MAX_REGIONS_AF android.control.maxRegionsAf} is 0. * Otherwise will always be present.</p> * <p>The maximum number of focus areas supported by the device is determined by the value * of {@link CameraCharacteristics#CONTROL_MAX_REGIONS_AF android.control.maxRegionsAf}.</p> * <p>The coordinate system is based on the active pixel array, * with (0,0) being the top-left pixel in the active pixel array, and * ({@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.width - 1, * {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.height - 1) being the * bottom-right pixel in the active pixel array.</p> * <p>The weight must be within <code>[0, 1000]</code>, and represents a weight * for every pixel in the area. This means that a large metering area * with the same weight as a smaller area will have more effect in * the metering result. Metering areas can partially overlap and the * camera device will add the weights in the overlap region.</p> * <p>The weights are relative to weights of other metering regions, so if only one region * is used, all non-zero weights will have the same effect. A region with 0 weight is * ignored.</p> * <p>If all regions have 0 weight, then no specific metering area needs to be used by the * camera device.</p> * <p>If the metering region is outside the used {@link CaptureRequest#SCALER_CROP_REGION android.scaler.cropRegion} returned in * capture result metadata, the camera device will ignore the sections outside the crop * region and output only the intersection rectangle as the metering region in the result * metadata. If the region is entirely outside the crop region, it will be ignored and * not reported in the result metadata.</p> * <p><b>Units</b>: Pixel coordinates within {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}</p> * <p><b>Range of valid values:</b><br> * Coordinates must be between <code>[(0,0), (width, height))</code> of * {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#CONTROL_MAX_REGIONS_AF * @see CaptureRequest#SCALER_CROP_REGION * @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE */ @PublicKey public static final Key<android.hardware.camera2.params.MeteringRectangle[]> CONTROL_AF_REGIONS = new Key<android.hardware.camera2.params.MeteringRectangle[]>("android.control.afRegions", android.hardware.camera2.params.MeteringRectangle[].class); /** * <p>Whether the camera device will trigger autofocus for this request.</p> * <p>This entry is normally set to IDLE, or is not * included at all in the request settings.</p> * <p>When included and set to START, the camera device will trigger the * autofocus algorithm. If autofocus is disabled, this trigger has no effect.</p> * <p>When set to CANCEL, the camera device will cancel any active trigger, * and return to its initial AF state.</p> * <p>Generally, applications should set this entry to START or CANCEL for only a * single capture, and then return it to IDLE (or not set at all). Specifying * START for multiple captures in a row means restarting the AF operation over * and over again.</p> * <p>See {@link CaptureResult#CONTROL_AF_STATE android.control.afState} for what the trigger means for each AF mode.</p> * <p>Using the autofocus trigger and the precapture trigger {@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger} * simultaneously is allowed. However, since these triggers often require cooperation between * the auto-focus and auto-exposure routines (for example, the may need to be enabled for a * focus sweep), the camera device may delay acting on a later trigger until the previous * trigger has been fully handled. This may lead to longer intervals between the trigger and * changes to {@link CaptureResult#CONTROL_AF_STATE android.control.afState}, for example.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_AF_TRIGGER_IDLE IDLE}</li> * <li>{@link #CONTROL_AF_TRIGGER_START START}</li> * <li>{@link #CONTROL_AF_TRIGGER_CANCEL CANCEL}</li> * </ul></p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER * @see CaptureResult#CONTROL_AF_STATE * @see #CONTROL_AF_TRIGGER_IDLE * @see #CONTROL_AF_TRIGGER_START * @see #CONTROL_AF_TRIGGER_CANCEL */ @PublicKey public static final Key<Integer> CONTROL_AF_TRIGGER = new Key<Integer>("android.control.afTrigger", int.class); /** * <p>Current state of auto-focus (AF) algorithm.</p> * <p>Switching between or enabling AF modes ({@link CaptureRequest#CONTROL_AF_MODE android.control.afMode}) always * resets the AF state to INACTIVE. Similarly, switching between {@link CaptureRequest#CONTROL_MODE android.control.mode}, * or {@link CaptureRequest#CONTROL_SCENE_MODE android.control.sceneMode} if <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} == USE_SCENE_MODE</code> resets all * the algorithm states to INACTIVE.</p> * <p>The camera device can do several state transitions between two results, if it is * allowed by the state transition table. For example: INACTIVE may never actually be * seen in a result.</p> * <p>The state in the result is the state for this image (in sync with this image): if * AF state becomes FOCUSED, then the image data associated with this result should * be sharp.</p> * <p>Below are state transition tables for different AF modes.</p> * <p>When {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode} is AF_MODE_OFF or AF_MODE_EDOF:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center"></td> * <td align="center">INACTIVE</td> * <td align="center">Never changes</td> * </tr> * </tbody> * </table> * <p>When {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode} is AF_MODE_AUTO or AF_MODE_MACRO:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center">AF_TRIGGER</td> * <td align="center">ACTIVE_SCAN</td> * <td align="center">Start AF sweep, Lens now moving</td> * </tr> * <tr> * <td align="center">ACTIVE_SCAN</td> * <td align="center">AF sweep done</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">Focused, Lens now locked</td> * </tr> * <tr> * <td align="center">ACTIVE_SCAN</td> * <td align="center">AF sweep done</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">Not focused, Lens now locked</td> * </tr> * <tr> * <td align="center">ACTIVE_SCAN</td> * <td align="center">AF_CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Cancel/reset AF, Lens now locked</td> * </tr> * <tr> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">AF_CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Cancel/reset AF</td> * </tr> * <tr> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">ACTIVE_SCAN</td> * <td align="center">Start new sweep, Lens now moving</td> * </tr> * <tr> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">AF_CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Cancel/reset AF</td> * </tr> * <tr> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">ACTIVE_SCAN</td> * <td align="center">Start new sweep, Lens now moving</td> * </tr> * <tr> * <td align="center">Any state</td> * <td align="center">Mode change</td> * <td align="center">INACTIVE</td> * <td align="center"></td> * </tr> * </tbody> * </table> * <p>For the above table, the camera device may skip reporting any state changes that happen * without application intervention (i.e. mode switch, trigger, locking). Any state that * can be skipped in that manner is called a transient state.</p> * <p>For example, for these AF modes (AF_MODE_AUTO and AF_MODE_MACRO), in addition to the * state transitions listed in above table, it is also legal for the camera device to skip * one or more transient states between two results. See below table for examples:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center">AF_TRIGGER</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">Focus is already good or good after a scan, lens is now locked.</td> * </tr> * <tr> * <td align="center">INACTIVE</td> * <td align="center">AF_TRIGGER</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">Focus failed after a scan, lens is now locked.</td> * </tr> * <tr> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">Focus is already good or good after a scan, lens is now locked.</td> * </tr> * <tr> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">Focus is good after a scan, lens is not locked.</td> * </tr> * </tbody> * </table> * <p>When {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode} is AF_MODE_CONTINUOUS_VIDEO:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center">Camera device initiates new scan</td> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Start AF scan, Lens now moving</td> * </tr> * <tr> * <td align="center">INACTIVE</td> * <td align="center">AF_TRIGGER</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">AF state query, Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Camera device completes current scan</td> * <td align="center">PASSIVE_FOCUSED</td> * <td align="center">End AF scan, Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Camera device fails current scan</td> * <td align="center">PASSIVE_UNFOCUSED</td> * <td align="center">End AF scan, Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">AF_TRIGGER</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">Immediate transition, if focus is good. Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">AF_TRIGGER</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">Immediate transition, if focus is bad. Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">AF_CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Reset lens position, Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_FOCUSED</td> * <td align="center">Camera device initiates new scan</td> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Start AF scan, Lens now moving</td> * </tr> * <tr> * <td align="center">PASSIVE_UNFOCUSED</td> * <td align="center">Camera device initiates new scan</td> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Start AF scan, Lens now moving</td> * </tr> * <tr> * <td align="center">PASSIVE_FOCUSED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">Immediate transition, lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_UNFOCUSED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">Immediate transition, lens now locked</td> * </tr> * <tr> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">No effect</td> * </tr> * <tr> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">AF_CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Restart AF scan</td> * </tr> * <tr> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">No effect</td> * </tr> * <tr> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">AF_CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Restart AF scan</td> * </tr> * </tbody> * </table> * <p>When {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode} is AF_MODE_CONTINUOUS_PICTURE:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center">Camera device initiates new scan</td> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Start AF scan, Lens now moving</td> * </tr> * <tr> * <td align="center">INACTIVE</td> * <td align="center">AF_TRIGGER</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">AF state query, Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Camera device completes current scan</td> * <td align="center">PASSIVE_FOCUSED</td> * <td align="center">End AF scan, Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Camera device fails current scan</td> * <td align="center">PASSIVE_UNFOCUSED</td> * <td align="center">End AF scan, Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">AF_TRIGGER</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">Eventual transition once the focus is good. Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">AF_TRIGGER</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">Eventual transition if cannot find focus. Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_SCAN</td> * <td align="center">AF_CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Reset lens position, Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_FOCUSED</td> * <td align="center">Camera device initiates new scan</td> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Start AF scan, Lens now moving</td> * </tr> * <tr> * <td align="center">PASSIVE_UNFOCUSED</td> * <td align="center">Camera device initiates new scan</td> * <td align="center">PASSIVE_SCAN</td> * <td align="center">Start AF scan, Lens now moving</td> * </tr> * <tr> * <td align="center">PASSIVE_FOCUSED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">Immediate trans. Lens now locked</td> * </tr> * <tr> * <td align="center">PASSIVE_UNFOCUSED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">Immediate trans. Lens now locked</td> * </tr> * <tr> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">No effect</td> * </tr> * <tr> * <td align="center">FOCUSED_LOCKED</td> * <td align="center">AF_CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Restart AF scan</td> * </tr> * <tr> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">AF_TRIGGER</td> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">No effect</td> * </tr> * <tr> * <td align="center">NOT_FOCUSED_LOCKED</td> * <td align="center">AF_CANCEL</td> * <td align="center">INACTIVE</td> * <td align="center">Restart AF scan</td> * </tr> * </tbody> * </table> * <p>When switch between AF_MODE_CONTINUOUS_* (CAF modes) and AF_MODE_AUTO/AF_MODE_MACRO * (AUTO modes), the initial INACTIVE or PASSIVE_SCAN states may be skipped by the * camera device. When a trigger is included in a mode switch request, the trigger * will be evaluated in the context of the new mode in the request. * See below table for examples:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">any state</td> * <td align="center">CAF-->AUTO mode switch</td> * <td align="center">INACTIVE</td> * <td align="center">Mode switch without trigger, initial state must be INACTIVE</td> * </tr> * <tr> * <td align="center">any state</td> * <td align="center">CAF-->AUTO mode switch with AF_TRIGGER</td> * <td align="center">trigger-reachable states from INACTIVE</td> * <td align="center">Mode switch with trigger, INACTIVE is skipped</td> * </tr> * <tr> * <td align="center">any state</td> * <td align="center">AUTO-->CAF mode switch</td> * <td align="center">passively reachable states from INACTIVE</td> * <td align="center">Mode switch without trigger, passive transient state is skipped</td> * </tr> * </tbody> * </table> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_AF_STATE_INACTIVE INACTIVE}</li> * <li>{@link #CONTROL_AF_STATE_PASSIVE_SCAN PASSIVE_SCAN}</li> * <li>{@link #CONTROL_AF_STATE_PASSIVE_FOCUSED PASSIVE_FOCUSED}</li> * <li>{@link #CONTROL_AF_STATE_ACTIVE_SCAN ACTIVE_SCAN}</li> * <li>{@link #CONTROL_AF_STATE_FOCUSED_LOCKED FOCUSED_LOCKED}</li> * <li>{@link #CONTROL_AF_STATE_NOT_FOCUSED_LOCKED NOT_FOCUSED_LOCKED}</li> * <li>{@link #CONTROL_AF_STATE_PASSIVE_UNFOCUSED PASSIVE_UNFOCUSED}</li> * </ul></p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_AF_MODE * @see CaptureRequest#CONTROL_MODE * @see CaptureRequest#CONTROL_SCENE_MODE * @see #CONTROL_AF_STATE_INACTIVE * @see #CONTROL_AF_STATE_PASSIVE_SCAN * @see #CONTROL_AF_STATE_PASSIVE_FOCUSED * @see #CONTROL_AF_STATE_ACTIVE_SCAN * @see #CONTROL_AF_STATE_FOCUSED_LOCKED * @see #CONTROL_AF_STATE_NOT_FOCUSED_LOCKED * @see #CONTROL_AF_STATE_PASSIVE_UNFOCUSED */ @PublicKey public static final Key<Integer> CONTROL_AF_STATE = new Key<Integer>("android.control.afState", int.class); /** * <p>Whether auto-white balance (AWB) is currently locked to its * latest calculated values.</p> * <p>When set to <code>true</code> (ON), the AWB algorithm is locked to its latest parameters, * and will not change color balance settings until the lock is set to <code>false</code> (OFF).</p> * <p>Since the camera device has a pipeline of in-flight requests, the settings that * get locked do not necessarily correspond to the settings that were present in the * latest capture result received from the camera device, since additional captures * and AWB updates may have occurred even before the result was sent out. If an * application is switching between automatic and manual control and wishes to eliminate * any flicker during the switch, the following procedure is recommended:</p> * <ol> * <li>Starting in auto-AWB mode:</li> * <li>Lock AWB</li> * <li>Wait for the first result to be output that has the AWB locked</li> * <li>Copy AWB settings from that result into a request, set the request to manual AWB</li> * <li>Submit the capture request, proceed to run manual AWB as desired.</li> * </ol> * <p>Note that AWB lock is only meaningful when * {@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode} is in the AUTO mode; in other modes, * AWB is already fixed to a specific setting.</p> * <p>Some LEGACY devices may not support ON; the value is then overridden to OFF.</p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_AWB_MODE */ @PublicKey public static final Key<Boolean> CONTROL_AWB_LOCK = new Key<Boolean>("android.control.awbLock", boolean.class); /** * <p>Whether auto-white balance (AWB) is currently setting the color * transform fields, and what its illumination target * is.</p> * <p>This control is only effective if {@link CaptureRequest#CONTROL_MODE android.control.mode} is AUTO.</p> * <p>When set to the ON mode, the camera device's auto-white balance * routine is enabled, overriding the application's selected * {@link CaptureRequest#COLOR_CORRECTION_TRANSFORM android.colorCorrection.transform}, {@link CaptureRequest#COLOR_CORRECTION_GAINS android.colorCorrection.gains} and * {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode}. Note that when {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} * is OFF, the behavior of AWB is device dependent. It is recommened to * also set AWB mode to OFF or lock AWB by using {@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} before * setting AE mode to OFF.</p> * <p>When set to the OFF mode, the camera device's auto-white balance * routine is disabled. The application manually controls the white * balance by {@link CaptureRequest#COLOR_CORRECTION_TRANSFORM android.colorCorrection.transform}, {@link CaptureRequest#COLOR_CORRECTION_GAINS android.colorCorrection.gains} * and {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode}.</p> * <p>When set to any other modes, the camera device's auto-white * balance routine is disabled. The camera device uses each * particular illumination target for white balance * adjustment. The application's values for * {@link CaptureRequest#COLOR_CORRECTION_TRANSFORM android.colorCorrection.transform}, * {@link CaptureRequest#COLOR_CORRECTION_GAINS android.colorCorrection.gains} and * {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} are ignored.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_AWB_MODE_OFF OFF}</li> * <li>{@link #CONTROL_AWB_MODE_AUTO AUTO}</li> * <li>{@link #CONTROL_AWB_MODE_INCANDESCENT INCANDESCENT}</li> * <li>{@link #CONTROL_AWB_MODE_FLUORESCENT FLUORESCENT}</li> * <li>{@link #CONTROL_AWB_MODE_WARM_FLUORESCENT WARM_FLUORESCENT}</li> * <li>{@link #CONTROL_AWB_MODE_DAYLIGHT DAYLIGHT}</li> * <li>{@link #CONTROL_AWB_MODE_CLOUDY_DAYLIGHT CLOUDY_DAYLIGHT}</li> * <li>{@link #CONTROL_AWB_MODE_TWILIGHT TWILIGHT}</li> * <li>{@link #CONTROL_AWB_MODE_SHADE SHADE}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#CONTROL_AWB_AVAILABLE_MODES android.control.awbAvailableModes}</p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#COLOR_CORRECTION_GAINS * @see CaptureRequest#COLOR_CORRECTION_MODE * @see CaptureRequest#COLOR_CORRECTION_TRANSFORM * @see CaptureRequest#CONTROL_AE_MODE * @see CameraCharacteristics#CONTROL_AWB_AVAILABLE_MODES * @see CaptureRequest#CONTROL_AWB_LOCK * @see CaptureRequest#CONTROL_MODE * @see #CONTROL_AWB_MODE_OFF * @see #CONTROL_AWB_MODE_AUTO * @see #CONTROL_AWB_MODE_INCANDESCENT * @see #CONTROL_AWB_MODE_FLUORESCENT * @see #CONTROL_AWB_MODE_WARM_FLUORESCENT * @see #CONTROL_AWB_MODE_DAYLIGHT * @see #CONTROL_AWB_MODE_CLOUDY_DAYLIGHT * @see #CONTROL_AWB_MODE_TWILIGHT * @see #CONTROL_AWB_MODE_SHADE */ @PublicKey public static final Key<Integer> CONTROL_AWB_MODE = new Key<Integer>("android.control.awbMode", int.class); /** * <p>List of metering areas to use for auto-white-balance illuminant * estimation.</p> * <p>Not available if {@link CameraCharacteristics#CONTROL_MAX_REGIONS_AWB android.control.maxRegionsAwb} is 0. * Otherwise will always be present.</p> * <p>The maximum number of regions supported by the device is determined by the value * of {@link CameraCharacteristics#CONTROL_MAX_REGIONS_AWB android.control.maxRegionsAwb}.</p> * <p>The coordinate system is based on the active pixel array, * with (0,0) being the top-left pixel in the active pixel array, and * ({@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.width - 1, * {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.height - 1) being the * bottom-right pixel in the active pixel array.</p> * <p>The weight must range from 0 to 1000, and represents a weight * for every pixel in the area. This means that a large metering area * with the same weight as a smaller area will have more effect in * the metering result. Metering areas can partially overlap and the * camera device will add the weights in the overlap region.</p> * <p>The weights are relative to weights of other white balance metering regions, so if * only one region is used, all non-zero weights will have the same effect. A region with * 0 weight is ignored.</p> * <p>If all regions have 0 weight, then no specific metering area needs to be used by the * camera device.</p> * <p>If the metering region is outside the used {@link CaptureRequest#SCALER_CROP_REGION android.scaler.cropRegion} returned in * capture result metadata, the camera device will ignore the sections outside the crop * region and output only the intersection rectangle as the metering region in the result * metadata. If the region is entirely outside the crop region, it will be ignored and * not reported in the result metadata.</p> * <p><b>Units</b>: Pixel coordinates within {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}</p> * <p><b>Range of valid values:</b><br> * Coordinates must be between <code>[(0,0), (width, height))</code> of * {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#CONTROL_MAX_REGIONS_AWB * @see CaptureRequest#SCALER_CROP_REGION * @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE */ @PublicKey public static final Key<android.hardware.camera2.params.MeteringRectangle[]> CONTROL_AWB_REGIONS = new Key<android.hardware.camera2.params.MeteringRectangle[]>("android.control.awbRegions", android.hardware.camera2.params.MeteringRectangle[].class); /** * <p>Information to the camera device 3A (auto-exposure, * auto-focus, auto-white balance) routines about the purpose * of this capture, to help the camera device to decide optimal 3A * strategy.</p> * <p>This control (except for MANUAL) is only effective if * <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} != OFF</code> and any 3A routine is active.</p> * <p>ZERO_SHUTTER_LAG will be supported if {@link CameraCharacteristics#REQUEST_AVAILABLE_CAPABILITIES android.request.availableCapabilities} * contains PRIVATE_REPROCESSING or YUV_REPROCESSING. MANUAL will be supported if * {@link CameraCharacteristics#REQUEST_AVAILABLE_CAPABILITIES android.request.availableCapabilities} contains MANUAL_SENSOR. Other intent values are * always supported.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_CAPTURE_INTENT_CUSTOM CUSTOM}</li> * <li>{@link #CONTROL_CAPTURE_INTENT_PREVIEW PREVIEW}</li> * <li>{@link #CONTROL_CAPTURE_INTENT_STILL_CAPTURE STILL_CAPTURE}</li> * <li>{@link #CONTROL_CAPTURE_INTENT_VIDEO_RECORD VIDEO_RECORD}</li> * <li>{@link #CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT VIDEO_SNAPSHOT}</li> * <li>{@link #CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG ZERO_SHUTTER_LAG}</li> * <li>{@link #CONTROL_CAPTURE_INTENT_MANUAL MANUAL}</li> * </ul></p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_MODE * @see CameraCharacteristics#REQUEST_AVAILABLE_CAPABILITIES * @see #CONTROL_CAPTURE_INTENT_CUSTOM * @see #CONTROL_CAPTURE_INTENT_PREVIEW * @see #CONTROL_CAPTURE_INTENT_STILL_CAPTURE * @see #CONTROL_CAPTURE_INTENT_VIDEO_RECORD * @see #CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT * @see #CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG * @see #CONTROL_CAPTURE_INTENT_MANUAL */ @PublicKey public static final Key<Integer> CONTROL_CAPTURE_INTENT = new Key<Integer>("android.control.captureIntent", int.class); /** * <p>Current state of auto-white balance (AWB) algorithm.</p> * <p>Switching between or enabling AWB modes ({@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode}) always * resets the AWB state to INACTIVE. Similarly, switching between {@link CaptureRequest#CONTROL_MODE android.control.mode}, * or {@link CaptureRequest#CONTROL_SCENE_MODE android.control.sceneMode} if <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} == USE_SCENE_MODE</code> resets all * the algorithm states to INACTIVE.</p> * <p>The camera device can do several state transitions between two results, if it is * allowed by the state transition table. So INACTIVE may never actually be seen in * a result.</p> * <p>The state in the result is the state for this image (in sync with this image): if * AWB state becomes CONVERGED, then the image data associated with this result should * be good to use.</p> * <p>Below are state transition tables for different AWB modes.</p> * <p>When <code>{@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode} != AWB_MODE_AUTO</code>:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center"></td> * <td align="center">INACTIVE</td> * <td align="center">Camera device auto white balance algorithm is disabled</td> * </tr> * </tbody> * </table> * <p>When {@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode} is AWB_MODE_AUTO:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center">Camera device initiates AWB scan</td> * <td align="center">SEARCHING</td> * <td align="center">Values changing</td> * </tr> * <tr> * <td align="center">INACTIVE</td> * <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is ON</td> * <td align="center">LOCKED</td> * <td align="center">Values locked</td> * </tr> * <tr> * <td align="center">SEARCHING</td> * <td align="center">Camera device finishes AWB scan</td> * <td align="center">CONVERGED</td> * <td align="center">Good values, not changing</td> * </tr> * <tr> * <td align="center">SEARCHING</td> * <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is ON</td> * <td align="center">LOCKED</td> * <td align="center">Values locked</td> * </tr> * <tr> * <td align="center">CONVERGED</td> * <td align="center">Camera device initiates AWB scan</td> * <td align="center">SEARCHING</td> * <td align="center">Values changing</td> * </tr> * <tr> * <td align="center">CONVERGED</td> * <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is ON</td> * <td align="center">LOCKED</td> * <td align="center">Values locked</td> * </tr> * <tr> * <td align="center">LOCKED</td> * <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is OFF</td> * <td align="center">SEARCHING</td> * <td align="center">Values not good after unlock</td> * </tr> * </tbody> * </table> * <p>For the above table, the camera device may skip reporting any state changes that happen * without application intervention (i.e. mode switch, trigger, locking). Any state that * can be skipped in that manner is called a transient state.</p> * <p>For example, for this AWB mode (AWB_MODE_AUTO), in addition to the state transitions * listed in above table, it is also legal for the camera device to skip one or more * transient states between two results. See below table for examples:</p> * <table> * <thead> * <tr> * <th align="center">State</th> * <th align="center">Transition Cause</th> * <th align="center">New State</th> * <th align="center">Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td align="center">INACTIVE</td> * <td align="center">Camera device finished AWB scan</td> * <td align="center">CONVERGED</td> * <td align="center">Values are already good, transient states are skipped by camera device.</td> * </tr> * <tr> * <td align="center">LOCKED</td> * <td align="center">{@link CaptureRequest#CONTROL_AWB_LOCK android.control.awbLock} is OFF</td> * <td align="center">CONVERGED</td> * <td align="center">Values good after unlock, transient states are skipped by camera device.</td> * </tr> * </tbody> * </table> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_AWB_STATE_INACTIVE INACTIVE}</li> * <li>{@link #CONTROL_AWB_STATE_SEARCHING SEARCHING}</li> * <li>{@link #CONTROL_AWB_STATE_CONVERGED CONVERGED}</li> * <li>{@link #CONTROL_AWB_STATE_LOCKED LOCKED}</li> * </ul></p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Limited capability</b> - * Present on all camera devices that report being at least {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED HARDWARE_LEVEL_LIMITED} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AWB_LOCK * @see CaptureRequest#CONTROL_AWB_MODE * @see CaptureRequest#CONTROL_MODE * @see CaptureRequest#CONTROL_SCENE_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see #CONTROL_AWB_STATE_INACTIVE * @see #CONTROL_AWB_STATE_SEARCHING * @see #CONTROL_AWB_STATE_CONVERGED * @see #CONTROL_AWB_STATE_LOCKED */ @PublicKey public static final Key<Integer> CONTROL_AWB_STATE = new Key<Integer>("android.control.awbState", int.class); /** * <p>A special color effect to apply.</p> * <p>When this mode is set, a color effect will be applied * to images produced by the camera device. The interpretation * and implementation of these color effects is left to the * implementor of the camera device, and should not be * depended on to be consistent (or present) across all * devices.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_EFFECT_MODE_OFF OFF}</li> * <li>{@link #CONTROL_EFFECT_MODE_MONO MONO}</li> * <li>{@link #CONTROL_EFFECT_MODE_NEGATIVE NEGATIVE}</li> * <li>{@link #CONTROL_EFFECT_MODE_SOLARIZE SOLARIZE}</li> * <li>{@link #CONTROL_EFFECT_MODE_SEPIA SEPIA}</li> * <li>{@link #CONTROL_EFFECT_MODE_POSTERIZE POSTERIZE}</li> * <li>{@link #CONTROL_EFFECT_MODE_WHITEBOARD WHITEBOARD}</li> * <li>{@link #CONTROL_EFFECT_MODE_BLACKBOARD BLACKBOARD}</li> * <li>{@link #CONTROL_EFFECT_MODE_AQUA AQUA}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#CONTROL_AVAILABLE_EFFECTS android.control.availableEffects}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#CONTROL_AVAILABLE_EFFECTS * @see #CONTROL_EFFECT_MODE_OFF * @see #CONTROL_EFFECT_MODE_MONO * @see #CONTROL_EFFECT_MODE_NEGATIVE * @see #CONTROL_EFFECT_MODE_SOLARIZE * @see #CONTROL_EFFECT_MODE_SEPIA * @see #CONTROL_EFFECT_MODE_POSTERIZE * @see #CONTROL_EFFECT_MODE_WHITEBOARD * @see #CONTROL_EFFECT_MODE_BLACKBOARD * @see #CONTROL_EFFECT_MODE_AQUA */ @PublicKey public static final Key<Integer> CONTROL_EFFECT_MODE = new Key<Integer>("android.control.effectMode", int.class); /** * <p>Overall mode of 3A (auto-exposure, auto-white-balance, auto-focus) control * routines.</p> * <p>This is a top-level 3A control switch. When set to OFF, all 3A control * by the camera device is disabled. The application must set the fields for * capture parameters itself.</p> * <p>When set to AUTO, the individual algorithm controls in * android.control.* are in effect, such as {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode}.</p> * <p>When set to USE_SCENE_MODE, the individual controls in * android.control.* are mostly disabled, and the camera device implements * one of the scene mode settings (such as ACTION, SUNSET, or PARTY) * as it wishes. The camera device scene mode 3A settings are provided by * {@link android.hardware.camera2.CaptureResult capture results}.</p> * <p>When set to OFF_KEEP_STATE, it is similar to OFF mode, the only difference * is that this frame will not be used by camera device background 3A statistics * update, as if this frame is never captured. This mode can be used in the scenario * where the application doesn't want a 3A manual control capture to affect * the subsequent auto 3A capture results.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_MODE_OFF OFF}</li> * <li>{@link #CONTROL_MODE_AUTO AUTO}</li> * <li>{@link #CONTROL_MODE_USE_SCENE_MODE USE_SCENE_MODE}</li> * <li>{@link #CONTROL_MODE_OFF_KEEP_STATE OFF_KEEP_STATE}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#CONTROL_AVAILABLE_MODES android.control.availableModes}</p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_AF_MODE * @see CameraCharacteristics#CONTROL_AVAILABLE_MODES * @see #CONTROL_MODE_OFF * @see #CONTROL_MODE_AUTO * @see #CONTROL_MODE_USE_SCENE_MODE * @see #CONTROL_MODE_OFF_KEEP_STATE */ @PublicKey public static final Key<Integer> CONTROL_MODE = new Key<Integer>("android.control.mode", int.class); /** * <p>Control for which scene mode is currently active.</p> * <p>Scene modes are custom camera modes optimized for a certain set of conditions and * capture settings.</p> * <p>This is the mode that that is active when * <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} == USE_SCENE_MODE</code>. Aside from FACE_PRIORITY, these modes will * disable {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode}, {@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode}, and {@link CaptureRequest#CONTROL_AF_MODE android.control.afMode} * while in use.</p> * <p>The interpretation and implementation of these scene modes is left * to the implementor of the camera device. Their behavior will not be * consistent across all devices, and any given device may only implement * a subset of these modes.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_SCENE_MODE_DISABLED DISABLED}</li> * <li>{@link #CONTROL_SCENE_MODE_FACE_PRIORITY FACE_PRIORITY}</li> * <li>{@link #CONTROL_SCENE_MODE_ACTION ACTION}</li> * <li>{@link #CONTROL_SCENE_MODE_PORTRAIT PORTRAIT}</li> * <li>{@link #CONTROL_SCENE_MODE_LANDSCAPE LANDSCAPE}</li> * <li>{@link #CONTROL_SCENE_MODE_NIGHT NIGHT}</li> * <li>{@link #CONTROL_SCENE_MODE_NIGHT_PORTRAIT NIGHT_PORTRAIT}</li> * <li>{@link #CONTROL_SCENE_MODE_THEATRE THEATRE}</li> * <li>{@link #CONTROL_SCENE_MODE_BEACH BEACH}</li> * <li>{@link #CONTROL_SCENE_MODE_SNOW SNOW}</li> * <li>{@link #CONTROL_SCENE_MODE_SUNSET SUNSET}</li> * <li>{@link #CONTROL_SCENE_MODE_STEADYPHOTO STEADYPHOTO}</li> * <li>{@link #CONTROL_SCENE_MODE_FIREWORKS FIREWORKS}</li> * <li>{@link #CONTROL_SCENE_MODE_SPORTS SPORTS}</li> * <li>{@link #CONTROL_SCENE_MODE_PARTY PARTY}</li> * <li>{@link #CONTROL_SCENE_MODE_CANDLELIGHT CANDLELIGHT}</li> * <li>{@link #CONTROL_SCENE_MODE_BARCODE BARCODE}</li> * <li>{@link #CONTROL_SCENE_MODE_HIGH_SPEED_VIDEO HIGH_SPEED_VIDEO}</li> * <li>{@link #CONTROL_SCENE_MODE_HDR HDR}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#CONTROL_AVAILABLE_SCENE_MODES android.control.availableSceneModes}</p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_AF_MODE * @see CameraCharacteristics#CONTROL_AVAILABLE_SCENE_MODES * @see CaptureRequest#CONTROL_AWB_MODE * @see CaptureRequest#CONTROL_MODE * @see #CONTROL_SCENE_MODE_DISABLED * @see #CONTROL_SCENE_MODE_FACE_PRIORITY * @see #CONTROL_SCENE_MODE_ACTION * @see #CONTROL_SCENE_MODE_PORTRAIT * @see #CONTROL_SCENE_MODE_LANDSCAPE * @see #CONTROL_SCENE_MODE_NIGHT * @see #CONTROL_SCENE_MODE_NIGHT_PORTRAIT * @see #CONTROL_SCENE_MODE_THEATRE * @see #CONTROL_SCENE_MODE_BEACH * @see #CONTROL_SCENE_MODE_SNOW * @see #CONTROL_SCENE_MODE_SUNSET * @see #CONTROL_SCENE_MODE_STEADYPHOTO * @see #CONTROL_SCENE_MODE_FIREWORKS * @see #CONTROL_SCENE_MODE_SPORTS * @see #CONTROL_SCENE_MODE_PARTY * @see #CONTROL_SCENE_MODE_CANDLELIGHT * @see #CONTROL_SCENE_MODE_BARCODE * @see #CONTROL_SCENE_MODE_HIGH_SPEED_VIDEO * @see #CONTROL_SCENE_MODE_HDR */ @PublicKey public static final Key<Integer> CONTROL_SCENE_MODE = new Key<Integer>("android.control.sceneMode", int.class); /** * <p>Whether video stabilization is * active.</p> * <p>Video stabilization automatically warps images from * the camera in order to stabilize motion between consecutive frames.</p> * <p>If enabled, video stabilization can modify the * {@link CaptureRequest#SCALER_CROP_REGION android.scaler.cropRegion} to keep the video stream stabilized.</p> * <p>Switching between different video stabilization modes may take several * frames to initialize, the camera device will report the current mode * in capture result metadata. For example, When "ON" mode is requested, * the video stabilization modes in the first several capture results may * still be "OFF", and it will become "ON" when the initialization is * done.</p> * <p>In addition, not all recording sizes or frame rates may be supported for * stabilization by a device that reports stabilization support. It is guaranteed * that an output targeting a MediaRecorder or MediaCodec will be stabilized if * the recording resolution is less than or equal to 1920 x 1080 (width less than * or equal to 1920, height less than or equal to 1080), and the recording * frame rate is less than or equal to 30fps. At other sizes, the CaptureResult * {@link CaptureRequest#CONTROL_VIDEO_STABILIZATION_MODE android.control.videoStabilizationMode} field will return * OFF if the recording output is not stabilized, or if there are no output * Surface types that can be stabilized.</p> * <p>If a camera device supports both this mode and OIS * ({@link CaptureRequest#LENS_OPTICAL_STABILIZATION_MODE android.lens.opticalStabilizationMode}), turning both modes on may * produce undesirable interaction, so it is recommended not to enable * both at the same time.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #CONTROL_VIDEO_STABILIZATION_MODE_OFF OFF}</li> * <li>{@link #CONTROL_VIDEO_STABILIZATION_MODE_ON ON}</li> * </ul></p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_VIDEO_STABILIZATION_MODE * @see CaptureRequest#LENS_OPTICAL_STABILIZATION_MODE * @see CaptureRequest#SCALER_CROP_REGION * @see #CONTROL_VIDEO_STABILIZATION_MODE_OFF * @see #CONTROL_VIDEO_STABILIZATION_MODE_ON */ @PublicKey public static final Key<Integer> CONTROL_VIDEO_STABILIZATION_MODE = new Key<Integer>("android.control.videoStabilizationMode", int.class); /** * <p>The amount of additional sensitivity boost applied to output images * after RAW sensor data is captured.</p> * <p>Some camera devices support additional digital sensitivity boosting in the * camera processing pipeline after sensor RAW image is captured. * Such a boost will be applied to YUV/JPEG format output images but will not * have effect on RAW output formats like RAW_SENSOR, RAW10, RAW12 or RAW_OPAQUE.</p> * <p>This key will be <code>null</code> for devices that do not support any RAW format * outputs. For devices that do support RAW format outputs, this key will always * present, and if a device does not support post RAW sensitivity boost, it will * list <code>100</code> in this key.</p> * <p>If the camera device cannot apply the exact boost requested, it will reduce the * boost to the nearest supported value. * The final boost value used will be available in the output capture result.</p> * <p>For devices that support post RAW sensitivity boost, the YUV/JPEG output images * of such device will have the total sensitivity of * <code>{@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity} * {@link CaptureRequest#CONTROL_POST_RAW_SENSITIVITY_BOOST android.control.postRawSensitivityBoost} / 100</code> * The sensitivity of RAW format images will always be <code>{@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity}</code></p> * <p>This control is only effective if {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} or {@link CaptureRequest#CONTROL_MODE android.control.mode} is set to * OFF; otherwise the auto-exposure algorithm will override this value.</p> * <p><b>Units</b>: ISO arithmetic units, the same as {@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity}</p> * <p><b>Range of valid values:</b><br> * {@link CameraCharacteristics#CONTROL_POST_RAW_SENSITIVITY_BOOST_RANGE android.control.postRawSensitivityBoostRange}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_MODE * @see CaptureRequest#CONTROL_POST_RAW_SENSITIVITY_BOOST * @see CameraCharacteristics#CONTROL_POST_RAW_SENSITIVITY_BOOST_RANGE * @see CaptureRequest#SENSOR_SENSITIVITY */ @PublicKey public static final Key<Integer> CONTROL_POST_RAW_SENSITIVITY_BOOST = new Key<Integer>("android.control.postRawSensitivityBoost", int.class); /** * <p>Operation mode for edge * enhancement.</p> * <p>Edge enhancement improves sharpness and details in the captured image. OFF means * no enhancement will be applied by the camera device.</p> * <p>FAST/HIGH_QUALITY both mean camera device determined enhancement * will be applied. HIGH_QUALITY mode indicates that the * camera device will use the highest-quality enhancement algorithms, * even if it slows down capture rate. FAST means the camera device will * not slow down capture rate when applying edge enhancement. FAST may be the same as OFF if * edge enhancement will slow down capture rate. Every output stream will have a similar * amount of enhancement applied.</p> * <p>ZERO_SHUTTER_LAG is meant to be used by applications that maintain a continuous circular * buffer of high-resolution images during preview and reprocess image(s) from that buffer * into a final capture when triggered by the user. In this mode, the camera device applies * edge enhancement to low-resolution streams (below maximum recording resolution) to * maximize preview quality, but does not apply edge enhancement to high-resolution streams, * since those will be reprocessed later if necessary.</p> * <p>For YUV_REPROCESSING, these FAST/HIGH_QUALITY modes both mean that the camera * device will apply FAST/HIGH_QUALITY YUV-domain edge enhancement, respectively. * The camera device may adjust its internal edge enhancement parameters for best * image quality based on the {@link CaptureRequest#REPROCESS_EFFECTIVE_EXPOSURE_FACTOR android.reprocess.effectiveExposureFactor}, if it is set.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #EDGE_MODE_OFF OFF}</li> * <li>{@link #EDGE_MODE_FAST FAST}</li> * <li>{@link #EDGE_MODE_HIGH_QUALITY HIGH_QUALITY}</li> * <li>{@link #EDGE_MODE_ZERO_SHUTTER_LAG ZERO_SHUTTER_LAG}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#EDGE_AVAILABLE_EDGE_MODES android.edge.availableEdgeModes}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#EDGE_AVAILABLE_EDGE_MODES * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CaptureRequest#REPROCESS_EFFECTIVE_EXPOSURE_FACTOR * @see #EDGE_MODE_OFF * @see #EDGE_MODE_FAST * @see #EDGE_MODE_HIGH_QUALITY * @see #EDGE_MODE_ZERO_SHUTTER_LAG */ @PublicKey public static final Key<Integer> EDGE_MODE = new Key<Integer>("android.edge.mode", int.class); /** * <p>The desired mode for for the camera device's flash control.</p> * <p>This control is only effective when flash unit is available * (<code>{@link CameraCharacteristics#FLASH_INFO_AVAILABLE android.flash.info.available} == true</code>).</p> * <p>When this control is used, the {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} must be set to ON or OFF. * Otherwise, the camera device auto-exposure related flash control (ON_AUTO_FLASH, * ON_ALWAYS_FLASH, or ON_AUTO_FLASH_REDEYE) will override this control.</p> * <p>When set to OFF, the camera device will not fire flash for this capture.</p> * <p>When set to SINGLE, the camera device will fire flash regardless of the camera * device's auto-exposure routine's result. When used in still capture case, this * control should be used along with auto-exposure (AE) precapture metering sequence * ({@link CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER android.control.aePrecaptureTrigger}), otherwise, the image may be incorrectly exposed.</p> * <p>When set to TORCH, the flash will be on continuously. This mode can be used * for use cases such as preview, auto-focus assist, still capture, or video recording.</p> * <p>The flash status will be reported by {@link CaptureResult#FLASH_STATE android.flash.state} in the capture result metadata.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #FLASH_MODE_OFF OFF}</li> * <li>{@link #FLASH_MODE_SINGLE SINGLE}</li> * <li>{@link #FLASH_MODE_TORCH TORCH}</li> * </ul></p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_AE_PRECAPTURE_TRIGGER * @see CameraCharacteristics#FLASH_INFO_AVAILABLE * @see CaptureResult#FLASH_STATE * @see #FLASH_MODE_OFF * @see #FLASH_MODE_SINGLE * @see #FLASH_MODE_TORCH */ @PublicKey public static final Key<Integer> FLASH_MODE = new Key<Integer>("android.flash.mode", int.class); /** * <p>Current state of the flash * unit.</p> * <p>When the camera device doesn't have flash unit * (i.e. <code>{@link CameraCharacteristics#FLASH_INFO_AVAILABLE android.flash.info.available} == false</code>), this state will always be UNAVAILABLE. * Other states indicate the current flash status.</p> * <p>In certain conditions, this will be available on LEGACY devices:</p> * <ul> * <li>Flash-less cameras always return UNAVAILABLE.</li> * <li>Using {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} <code>==</code> ON_ALWAYS_FLASH * will always return FIRED.</li> * <li>Using {@link CaptureRequest#FLASH_MODE android.flash.mode} <code>==</code> TORCH * will always return FIRED.</li> * </ul> * <p>In all other conditions the state will not be available on * LEGACY devices (i.e. it will be <code>null</code>).</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #FLASH_STATE_UNAVAILABLE UNAVAILABLE}</li> * <li>{@link #FLASH_STATE_CHARGING CHARGING}</li> * <li>{@link #FLASH_STATE_READY READY}</li> * <li>{@link #FLASH_STATE_FIRED FIRED}</li> * <li>{@link #FLASH_STATE_PARTIAL PARTIAL}</li> * </ul></p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Limited capability</b> - * Present on all camera devices that report being at least {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED HARDWARE_LEVEL_LIMITED} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CameraCharacteristics#FLASH_INFO_AVAILABLE * @see CaptureRequest#FLASH_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see #FLASH_STATE_UNAVAILABLE * @see #FLASH_STATE_CHARGING * @see #FLASH_STATE_READY * @see #FLASH_STATE_FIRED * @see #FLASH_STATE_PARTIAL */ @PublicKey public static final Key<Integer> FLASH_STATE = new Key<Integer>("android.flash.state", int.class); /** * <p>Operational mode for hot pixel correction.</p> * <p>Hotpixel correction interpolates out, or otherwise removes, pixels * that do not accurately measure the incoming light (i.e. pixels that * are stuck at an arbitrary value or are oversensitive).</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #HOT_PIXEL_MODE_OFF OFF}</li> * <li>{@link #HOT_PIXEL_MODE_FAST FAST}</li> * <li>{@link #HOT_PIXEL_MODE_HIGH_QUALITY HIGH_QUALITY}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#HOT_PIXEL_AVAILABLE_HOT_PIXEL_MODES android.hotPixel.availableHotPixelModes}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#HOT_PIXEL_AVAILABLE_HOT_PIXEL_MODES * @see #HOT_PIXEL_MODE_OFF * @see #HOT_PIXEL_MODE_FAST * @see #HOT_PIXEL_MODE_HIGH_QUALITY */ @PublicKey public static final Key<Integer> HOT_PIXEL_MODE = new Key<Integer>("android.hotPixel.mode", int.class); /** * <p>A location object to use when generating image GPS metadata.</p> * <p>Setting a location object in a request will include the GPS coordinates of the location * into any JPEG images captured based on the request. These coordinates can then be * viewed by anyone who receives the JPEG image.</p> * <p>This key is available on all devices.</p> */ @PublicKey @SyntheticKey public static final Key<android.location.Location> JPEG_GPS_LOCATION = new Key<android.location.Location>("android.jpeg.gpsLocation", android.location.Location.class); /** * <p>GPS coordinates to include in output JPEG * EXIF.</p> * <p><b>Range of valid values:</b><br> * (-180 - 180], [-90,90], [-inf, inf]</p> * <p>This key is available on all devices.</p> * @hide */ public static final Key<double[]> JPEG_GPS_COORDINATES = new Key<double[]>("android.jpeg.gpsCoordinates", double[].class); /** * <p>32 characters describing GPS algorithm to * include in EXIF.</p> * <p><b>Units</b>: UTF-8 null-terminated string</p> * <p>This key is available on all devices.</p> * @hide */ public static final Key<String> JPEG_GPS_PROCESSING_METHOD = new Key<String>("android.jpeg.gpsProcessingMethod", String.class); /** * <p>Time GPS fix was made to include in * EXIF.</p> * <p><b>Units</b>: UTC in seconds since January 1, 1970</p> * <p>This key is available on all devices.</p> * @hide */ public static final Key<Long> JPEG_GPS_TIMESTAMP = new Key<Long>("android.jpeg.gpsTimestamp", long.class); /** * <p>The orientation for a JPEG image.</p> * <p>The clockwise rotation angle in degrees, relative to the orientation * to the camera, that the JPEG picture needs to be rotated by, to be viewed * upright.</p> * <p>Camera devices may either encode this value into the JPEG EXIF header, or * rotate the image data to match this orientation. When the image data is rotated, * the thumbnail data will also be rotated.</p> * <p>Note that this orientation is relative to the orientation of the camera sensor, given * by {@link CameraCharacteristics#SENSOR_ORIENTATION android.sensor.orientation}.</p> * <p>To translate from the device orientation given by the Android sensor APIs, the following * sample code may be used:</p> * <pre><code>private int getJpegOrientation(CameraCharacteristics c, int deviceOrientation) { * if (deviceOrientation == android.view.OrientationEventListener.ORIENTATION_UNKNOWN) return 0; * int sensorOrientation = c.get(CameraCharacteristics.SENSOR_ORIENTATION); * * // Round device orientation to a multiple of 90 * deviceOrientation = (deviceOrientation + 45) / 90 * 90; * * // Reverse device orientation for front-facing cameras * boolean facingFront = c.get(CameraCharacteristics.LENS_FACING) == CameraCharacteristics.LENS_FACING_FRONT; * if (facingFront) deviceOrientation = -deviceOrientation; * * // Calculate desired JPEG orientation relative to camera orientation to make * // the image upright relative to the device orientation * int jpegOrientation = (sensorOrientation + deviceOrientation + 360) % 360; * * return jpegOrientation; * } * </code></pre> * <p><b>Units</b>: Degrees in multiples of 90</p> * <p><b>Range of valid values:</b><br> * 0, 90, 180, 270</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#SENSOR_ORIENTATION */ @PublicKey public static final Key<Integer> JPEG_ORIENTATION = new Key<Integer>("android.jpeg.orientation", int.class); /** * <p>Compression quality of the final JPEG * image.</p> * <p>85-95 is typical usage range.</p> * <p><b>Range of valid values:</b><br> * 1-100; larger is higher quality</p> * <p>This key is available on all devices.</p> */ @PublicKey public static final Key<Byte> JPEG_QUALITY = new Key<Byte>("android.jpeg.quality", byte.class); /** * <p>Compression quality of JPEG * thumbnail.</p> * <p><b>Range of valid values:</b><br> * 1-100; larger is higher quality</p> * <p>This key is available on all devices.</p> */ @PublicKey public static final Key<Byte> JPEG_THUMBNAIL_QUALITY = new Key<Byte>("android.jpeg.thumbnailQuality", byte.class); /** * <p>Resolution of embedded JPEG thumbnail.</p> * <p>When set to (0, 0) value, the JPEG EXIF will not contain thumbnail, * but the captured JPEG will still be a valid image.</p> * <p>For best results, when issuing a request for a JPEG image, the thumbnail size selected * should have the same aspect ratio as the main JPEG output.</p> * <p>If the thumbnail image aspect ratio differs from the JPEG primary image aspect * ratio, the camera device creates the thumbnail by cropping it from the primary image. * For example, if the primary image has 4:3 aspect ratio, the thumbnail image has * 16:9 aspect ratio, the primary image will be cropped vertically (letterbox) to * generate the thumbnail image. The thumbnail image will always have a smaller Field * Of View (FOV) than the primary image when aspect ratios differ.</p> * <p>When an {@link CaptureRequest#JPEG_ORIENTATION android.jpeg.orientation} of non-zero degree is requested, * the camera device will handle thumbnail rotation in one of the following ways:</p> * <ul> * <li>Set the {@link android.media.ExifInterface#TAG_ORIENTATION EXIF orientation flag} * and keep jpeg and thumbnail image data unrotated.</li> * <li>Rotate the jpeg and thumbnail image data and not set * {@link android.media.ExifInterface#TAG_ORIENTATION EXIF orientation flag}. In this * case, LIMITED or FULL hardware level devices will report rotated thumnail size in * capture result, so the width and height will be interchanged if 90 or 270 degree * orientation is requested. LEGACY device will always report unrotated thumbnail * size.</li> * </ul> * <p><b>Range of valid values:</b><br> * {@link CameraCharacteristics#JPEG_AVAILABLE_THUMBNAIL_SIZES android.jpeg.availableThumbnailSizes}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#JPEG_AVAILABLE_THUMBNAIL_SIZES * @see CaptureRequest#JPEG_ORIENTATION */ @PublicKey public static final Key<android.util.Size> JPEG_THUMBNAIL_SIZE = new Key<android.util.Size>("android.jpeg.thumbnailSize", android.util.Size.class); /** * <p>The desired lens aperture size, as a ratio of lens focal length to the * effective aperture diameter.</p> * <p>Setting this value is only supported on the camera devices that have a variable * aperture lens.</p> * <p>When this is supported and {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} is OFF, * this can be set along with {@link CaptureRequest#SENSOR_EXPOSURE_TIME android.sensor.exposureTime}, * {@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity}, and {@link CaptureRequest#SENSOR_FRAME_DURATION android.sensor.frameDuration} * to achieve manual exposure control.</p> * <p>The requested aperture value may take several frames to reach the * requested value; the camera device will report the current (intermediate) * aperture size in capture result metadata while the aperture is changing. * While the aperture is still changing, {@link CaptureResult#LENS_STATE android.lens.state} will be set to MOVING.</p> * <p>When this is supported and {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} is one of * the ON modes, this will be overridden by the camera device * auto-exposure algorithm, the overridden values are then provided * back to the user in the corresponding result.</p> * <p><b>Units</b>: The f-number (f/N)</p> * <p><b>Range of valid values:</b><br> * {@link CameraCharacteristics#LENS_INFO_AVAILABLE_APERTURES android.lens.info.availableApertures}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#LENS_INFO_AVAILABLE_APERTURES * @see CaptureResult#LENS_STATE * @see CaptureRequest#SENSOR_EXPOSURE_TIME * @see CaptureRequest#SENSOR_FRAME_DURATION * @see CaptureRequest#SENSOR_SENSITIVITY */ @PublicKey public static final Key<Float> LENS_APERTURE = new Key<Float>("android.lens.aperture", float.class); /** * <p>The desired setting for the lens neutral density filter(s).</p> * <p>This control will not be supported on most camera devices.</p> * <p>Lens filters are typically used to lower the amount of light the * sensor is exposed to (measured in steps of EV). As used here, an EV * step is the standard logarithmic representation, which are * non-negative, and inversely proportional to the amount of light * hitting the sensor. For example, setting this to 0 would result * in no reduction of the incoming light, and setting this to 2 would * mean that the filter is set to reduce incoming light by two stops * (allowing 1/4 of the prior amount of light to the sensor).</p> * <p>It may take several frames before the lens filter density changes * to the requested value. While the filter density is still changing, * {@link CaptureResult#LENS_STATE android.lens.state} will be set to MOVING.</p> * <p><b>Units</b>: Exposure Value (EV)</p> * <p><b>Range of valid values:</b><br> * {@link CameraCharacteristics#LENS_INFO_AVAILABLE_FILTER_DENSITIES android.lens.info.availableFilterDensities}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#LENS_INFO_AVAILABLE_FILTER_DENSITIES * @see CaptureResult#LENS_STATE */ @PublicKey public static final Key<Float> LENS_FILTER_DENSITY = new Key<Float>("android.lens.filterDensity", float.class); /** * <p>The desired lens focal length; used for optical zoom.</p> * <p>This setting controls the physical focal length of the camera * device's lens. Changing the focal length changes the field of * view of the camera device, and is usually used for optical zoom.</p> * <p>Like {@link CaptureRequest#LENS_FOCUS_DISTANCE android.lens.focusDistance} and {@link CaptureRequest#LENS_APERTURE android.lens.aperture}, this * setting won't be applied instantaneously, and it may take several * frames before the lens can change to the requested focal length. * While the focal length is still changing, {@link CaptureResult#LENS_STATE android.lens.state} will * be set to MOVING.</p> * <p>Optical zoom will not be supported on most devices.</p> * <p><b>Units</b>: Millimeters</p> * <p><b>Range of valid values:</b><br> * {@link CameraCharacteristics#LENS_INFO_AVAILABLE_FOCAL_LENGTHS android.lens.info.availableFocalLengths}</p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#LENS_APERTURE * @see CaptureRequest#LENS_FOCUS_DISTANCE * @see CameraCharacteristics#LENS_INFO_AVAILABLE_FOCAL_LENGTHS * @see CaptureResult#LENS_STATE */ @PublicKey public static final Key<Float> LENS_FOCAL_LENGTH = new Key<Float>("android.lens.focalLength", float.class); /** * <p>Desired distance to plane of sharpest focus, * measured from frontmost surface of the lens.</p> * <p>Should be zero for fixed-focus cameras</p> * <p><b>Units</b>: See {@link CameraCharacteristics#LENS_INFO_FOCUS_DISTANCE_CALIBRATION android.lens.info.focusDistanceCalibration} for details</p> * <p><b>Range of valid values:</b><br> * >= 0</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#LENS_INFO_FOCUS_DISTANCE_CALIBRATION */ @PublicKey public static final Key<Float> LENS_FOCUS_DISTANCE = new Key<Float>("android.lens.focusDistance", float.class); /** * <p>The range of scene distances that are in * sharp focus (depth of field).</p> * <p>If variable focus not supported, can still report * fixed depth of field range</p> * <p><b>Units</b>: A pair of focus distances in diopters: (near, * far); see {@link CameraCharacteristics#LENS_INFO_FOCUS_DISTANCE_CALIBRATION android.lens.info.focusDistanceCalibration} for details.</p> * <p><b>Range of valid values:</b><br> * >=0</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Limited capability</b> - * Present on all camera devices that report being at least {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED HARDWARE_LEVEL_LIMITED} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#LENS_INFO_FOCUS_DISTANCE_CALIBRATION */ @PublicKey public static final Key<android.util.Pair<Float,Float>> LENS_FOCUS_RANGE = new Key<android.util.Pair<Float,Float>>("android.lens.focusRange", new TypeReference<android.util.Pair<Float,Float>>() {{ }}); /** * <p>Sets whether the camera device uses optical image stabilization (OIS) * when capturing images.</p> * <p>OIS is used to compensate for motion blur due to small * movements of the camera during capture. Unlike digital image * stabilization ({@link CaptureRequest#CONTROL_VIDEO_STABILIZATION_MODE android.control.videoStabilizationMode}), OIS * makes use of mechanical elements to stabilize the camera * sensor, and thus allows for longer exposure times before * camera shake becomes apparent.</p> * <p>Switching between different optical stabilization modes may take several * frames to initialize, the camera device will report the current mode in * capture result metadata. For example, When "ON" mode is requested, the * optical stabilization modes in the first several capture results may still * be "OFF", and it will become "ON" when the initialization is done.</p> * <p>If a camera device supports both OIS and digital image stabilization * ({@link CaptureRequest#CONTROL_VIDEO_STABILIZATION_MODE android.control.videoStabilizationMode}), turning both modes on may produce undesirable * interaction, so it is recommended not to enable both at the same time.</p> * <p>Not all devices will support OIS; see * {@link CameraCharacteristics#LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION android.lens.info.availableOpticalStabilization} for * available controls.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #LENS_OPTICAL_STABILIZATION_MODE_OFF OFF}</li> * <li>{@link #LENS_OPTICAL_STABILIZATION_MODE_ON ON}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION android.lens.info.availableOpticalStabilization}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Limited capability</b> - * Present on all camera devices that report being at least {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED HARDWARE_LEVEL_LIMITED} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_VIDEO_STABILIZATION_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION * @see #LENS_OPTICAL_STABILIZATION_MODE_OFF * @see #LENS_OPTICAL_STABILIZATION_MODE_ON */ @PublicKey public static final Key<Integer> LENS_OPTICAL_STABILIZATION_MODE = new Key<Integer>("android.lens.opticalStabilizationMode", int.class); /** * <p>Current lens status.</p> * <p>For lens parameters {@link CaptureRequest#LENS_FOCAL_LENGTH android.lens.focalLength}, {@link CaptureRequest#LENS_FOCUS_DISTANCE android.lens.focusDistance}, * {@link CaptureRequest#LENS_FILTER_DENSITY android.lens.filterDensity} and {@link CaptureRequest#LENS_APERTURE android.lens.aperture}, when changes are requested, * they may take several frames to reach the requested values. This state indicates * the current status of the lens parameters.</p> * <p>When the state is STATIONARY, the lens parameters are not changing. This could be * either because the parameters are all fixed, or because the lens has had enough * time to reach the most recently-requested values. * If all these lens parameters are not changable for a camera device, as listed below:</p> * <ul> * <li>Fixed focus (<code>{@link CameraCharacteristics#LENS_INFO_MINIMUM_FOCUS_DISTANCE android.lens.info.minimumFocusDistance} == 0</code>), which means * {@link CaptureRequest#LENS_FOCUS_DISTANCE android.lens.focusDistance} parameter will always be 0.</li> * <li>Fixed focal length ({@link CameraCharacteristics#LENS_INFO_AVAILABLE_FOCAL_LENGTHS android.lens.info.availableFocalLengths} contains single value), * which means the optical zoom is not supported.</li> * <li>No ND filter ({@link CameraCharacteristics#LENS_INFO_AVAILABLE_FILTER_DENSITIES android.lens.info.availableFilterDensities} contains only 0).</li> * <li>Fixed aperture ({@link CameraCharacteristics#LENS_INFO_AVAILABLE_APERTURES android.lens.info.availableApertures} contains single value).</li> * </ul> * <p>Then this state will always be STATIONARY.</p> * <p>When the state is MOVING, it indicates that at least one of the lens parameters * is changing.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #LENS_STATE_STATIONARY STATIONARY}</li> * <li>{@link #LENS_STATE_MOVING MOVING}</li> * </ul></p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Limited capability</b> - * Present on all camera devices that report being at least {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED HARDWARE_LEVEL_LIMITED} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CaptureRequest#LENS_APERTURE * @see CaptureRequest#LENS_FILTER_DENSITY * @see CaptureRequest#LENS_FOCAL_LENGTH * @see CaptureRequest#LENS_FOCUS_DISTANCE * @see CameraCharacteristics#LENS_INFO_AVAILABLE_APERTURES * @see CameraCharacteristics#LENS_INFO_AVAILABLE_FILTER_DENSITIES * @see CameraCharacteristics#LENS_INFO_AVAILABLE_FOCAL_LENGTHS * @see CameraCharacteristics#LENS_INFO_MINIMUM_FOCUS_DISTANCE * @see #LENS_STATE_STATIONARY * @see #LENS_STATE_MOVING */ @PublicKey public static final Key<Integer> LENS_STATE = new Key<Integer>("android.lens.state", int.class); /** * <p>The orientation of the camera relative to the sensor * coordinate system.</p> * <p>The four coefficients that describe the quaternion * rotation from the Android sensor coordinate system to a * camera-aligned coordinate system where the X-axis is * aligned with the long side of the image sensor, the Y-axis * is aligned with the short side of the image sensor, and * the Z-axis is aligned with the optical axis of the sensor.</p> * <p>To convert from the quaternion coefficients <code>(x,y,z,w)</code> * to the axis of rotation <code>(a_x, a_y, a_z)</code> and rotation * amount <code>theta</code>, the following formulas can be used:</p> * <pre><code> theta = 2 * acos(w) * a_x = x / sin(theta/2) * a_y = y / sin(theta/2) * a_z = z / sin(theta/2) * </code></pre> * <p>To create a 3x3 rotation matrix that applies the rotation * defined by this quaternion, the following matrix can be * used:</p> * <pre><code>R = [ 1 - 2y^2 - 2z^2, 2xy - 2zw, 2xz + 2yw, * 2xy + 2zw, 1 - 2x^2 - 2z^2, 2yz - 2xw, * 2xz - 2yw, 2yz + 2xw, 1 - 2x^2 - 2y^2 ] * </code></pre> * <p>This matrix can then be used to apply the rotation to a * column vector point with</p> * <p><code>p' = Rp</code></p> * <p>where <code>p</code> is in the device sensor coordinate system, and * <code>p'</code> is in the camera-oriented coordinate system.</p> * <p><b>Units</b>: * Quaternion coefficients</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> */ @PublicKey public static final Key<float[]> LENS_POSE_ROTATION = new Key<float[]>("android.lens.poseRotation", float[].class); /** * <p>Position of the camera optical center.</p> * <p>The position of the camera device's lens optical center, * as a three-dimensional vector <code>(x,y,z)</code>, relative to the * optical center of the largest camera device facing in the * same direction as this camera, in the {@link android.hardware.SensorEvent Android sensor coordinate * axes}. Note that only the axis definitions are shared with * the sensor coordinate system, but not the origin.</p> * <p>If this device is the largest or only camera device with a * given facing, then this position will be <code>(0, 0, 0)</code>; a * camera device with a lens optical center located 3 cm from * the main sensor along the +X axis (to the right from the * user's perspective) will report <code>(0.03, 0, 0)</code>.</p> * <p>To transform a pixel coordinates between two cameras * facing the same direction, first the source camera * {@link CameraCharacteristics#LENS_RADIAL_DISTORTION android.lens.radialDistortion} must be corrected for. Then * the source camera {@link CameraCharacteristics#LENS_INTRINSIC_CALIBRATION android.lens.intrinsicCalibration} needs * to be applied, followed by the {@link CameraCharacteristics#LENS_POSE_ROTATION android.lens.poseRotation} * of the source camera, the translation of the source camera * relative to the destination camera, the * {@link CameraCharacteristics#LENS_POSE_ROTATION android.lens.poseRotation} of the destination camera, and * finally the inverse of {@link CameraCharacteristics#LENS_INTRINSIC_CALIBRATION android.lens.intrinsicCalibration} * of the destination camera. This obtains a * radial-distortion-free coordinate in the destination * camera pixel coordinates.</p> * <p>To compare this against a real image from the destination * camera, the destination camera image then needs to be * corrected for radial distortion before comparison or * sampling.</p> * <p><b>Units</b>: Meters</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#LENS_INTRINSIC_CALIBRATION * @see CameraCharacteristics#LENS_POSE_ROTATION * @see CameraCharacteristics#LENS_RADIAL_DISTORTION */ @PublicKey public static final Key<float[]> LENS_POSE_TRANSLATION = new Key<float[]>("android.lens.poseTranslation", float[].class); /** * <p>The parameters for this camera device's intrinsic * calibration.</p> * <p>The five calibration parameters that describe the * transform from camera-centric 3D coordinates to sensor * pixel coordinates:</p> * <pre><code>[f_x, f_y, c_x, c_y, s] * </code></pre> * <p>Where <code>f_x</code> and <code>f_y</code> are the horizontal and vertical * focal lengths, <code>[c_x, c_y]</code> is the position of the optical * axis, and <code>s</code> is a skew parameter for the sensor plane not * being aligned with the lens plane.</p> * <p>These are typically used within a transformation matrix K:</p> * <pre><code>K = [ f_x, s, c_x, * 0, f_y, c_y, * 0 0, 1 ] * </code></pre> * <p>which can then be combined with the camera pose rotation * <code>R</code> and translation <code>t</code> ({@link CameraCharacteristics#LENS_POSE_ROTATION android.lens.poseRotation} and * {@link CameraCharacteristics#LENS_POSE_TRANSLATION android.lens.poseTranslation}, respective) to calculate the * complete transform from world coordinates to pixel * coordinates:</p> * <pre><code>P = [ K 0 * [ R t * 0 1 ] 0 1 ] * </code></pre> * <p>and with <code>p_w</code> being a point in the world coordinate system * and <code>p_s</code> being a point in the camera active pixel array * coordinate system, and with the mapping including the * homogeneous division by z:</p> * <pre><code> p_h = (x_h, y_h, z_h) = P p_w * p_s = p_h / z_h * </code></pre> * <p>so <code>[x_s, y_s]</code> is the pixel coordinates of the world * point, <code>z_s = 1</code>, and <code>w_s</code> is a measurement of disparity * (depth) in pixel coordinates.</p> * <p>Note that the coordinate system for this transform is the * {@link CameraCharacteristics#SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE android.sensor.info.preCorrectionActiveArraySize} system, * where <code>(0,0)</code> is the top-left of the * preCorrectionActiveArraySize rectangle. Once the pose and * intrinsic calibration transforms have been applied to a * world point, then the {@link CameraCharacteristics#LENS_RADIAL_DISTORTION android.lens.radialDistortion} * transform needs to be applied, and the result adjusted to * be in the {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize} coordinate * system (where <code>(0, 0)</code> is the top-left of the * activeArraySize rectangle), to determine the final pixel * coordinate of the world point for processed (non-RAW) * output buffers.</p> * <p><b>Units</b>: * Pixels in the * {@link CameraCharacteristics#SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE android.sensor.info.preCorrectionActiveArraySize} * coordinate system.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#LENS_POSE_ROTATION * @see CameraCharacteristics#LENS_POSE_TRANSLATION * @see CameraCharacteristics#LENS_RADIAL_DISTORTION * @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE * @see CameraCharacteristics#SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE */ @PublicKey public static final Key<float[]> LENS_INTRINSIC_CALIBRATION = new Key<float[]>("android.lens.intrinsicCalibration", float[].class); /** * <p>The correction coefficients to correct for this camera device's * radial and tangential lens distortion.</p> * <p>Four radial distortion coefficients <code>[kappa_0, kappa_1, kappa_2, * kappa_3]</code> and two tangential distortion coefficients * <code>[kappa_4, kappa_5]</code> that can be used to correct the * lens's geometric distortion with the mapping equations:</p> * <pre><code> x_c = x_i * ( kappa_0 + kappa_1 * r^2 + kappa_2 * r^4 + kappa_3 * r^6 ) + * kappa_4 * (2 * x_i * y_i) + kappa_5 * ( r^2 + 2 * x_i^2 ) * y_c = y_i * ( kappa_0 + kappa_1 * r^2 + kappa_2 * r^4 + kappa_3 * r^6 ) + * kappa_5 * (2 * x_i * y_i) + kappa_4 * ( r^2 + 2 * y_i^2 ) * </code></pre> * <p>Here, <code>[x_c, y_c]</code> are the coordinates to sample in the * input image that correspond to the pixel values in the * corrected image at the coordinate <code>[x_i, y_i]</code>:</p> * <pre><code> correctedImage(x_i, y_i) = sample_at(x_c, y_c, inputImage) * </code></pre> * <p>The pixel coordinates are defined in a normalized * coordinate system related to the * {@link CameraCharacteristics#LENS_INTRINSIC_CALIBRATION android.lens.intrinsicCalibration} calibration fields. * Both <code>[x_i, y_i]</code> and <code>[x_c, y_c]</code> have <code>(0,0)</code> at the * lens optical center <code>[c_x, c_y]</code>. The maximum magnitudes * of both x and y coordinates are normalized to be 1 at the * edge further from the optical center, so the range * for both dimensions is <code>-1 <= x <= 1</code>.</p> * <p>Finally, <code>r</code> represents the radial distance from the * optical center, <code>r^2 = x_i^2 + y_i^2</code>, and its magnitude * is therefore no larger than <code>|r| <= sqrt(2)</code>.</p> * <p>The distortion model used is the Brown-Conrady model.</p> * <p><b>Units</b>: * Unitless coefficients.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#LENS_INTRINSIC_CALIBRATION */ @PublicKey public static final Key<float[]> LENS_RADIAL_DISTORTION = new Key<float[]>("android.lens.radialDistortion", float[].class); /** * <p>Mode of operation for the noise reduction algorithm.</p> * <p>The noise reduction algorithm attempts to improve image quality by removing * excessive noise added by the capture process, especially in dark conditions.</p> * <p>OFF means no noise reduction will be applied by the camera device, for both raw and * YUV domain.</p> * <p>MINIMAL means that only sensor raw domain basic noise reduction is enabled ,to remove * demosaicing or other processing artifacts. For YUV_REPROCESSING, MINIMAL is same as OFF. * This mode is optional, may not be support by all devices. The application should check * {@link CameraCharacteristics#NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES android.noiseReduction.availableNoiseReductionModes} before using it.</p> * <p>FAST/HIGH_QUALITY both mean camera device determined noise filtering * will be applied. HIGH_QUALITY mode indicates that the camera device * will use the highest-quality noise filtering algorithms, * even if it slows down capture rate. FAST means the camera device will not * slow down capture rate when applying noise filtering. FAST may be the same as MINIMAL if * MINIMAL is listed, or the same as OFF if any noise filtering will slow down capture rate. * Every output stream will have a similar amount of enhancement applied.</p> * <p>ZERO_SHUTTER_LAG is meant to be used by applications that maintain a continuous circular * buffer of high-resolution images during preview and reprocess image(s) from that buffer * into a final capture when triggered by the user. In this mode, the camera device applies * noise reduction to low-resolution streams (below maximum recording resolution) to maximize * preview quality, but does not apply noise reduction to high-resolution streams, since * those will be reprocessed later if necessary.</p> * <p>For YUV_REPROCESSING, these FAST/HIGH_QUALITY modes both mean that the camera device * will apply FAST/HIGH_QUALITY YUV domain noise reduction, respectively. The camera device * may adjust the noise reduction parameters for best image quality based on the * {@link CaptureRequest#REPROCESS_EFFECTIVE_EXPOSURE_FACTOR android.reprocess.effectiveExposureFactor} if it is set.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #NOISE_REDUCTION_MODE_OFF OFF}</li> * <li>{@link #NOISE_REDUCTION_MODE_FAST FAST}</li> * <li>{@link #NOISE_REDUCTION_MODE_HIGH_QUALITY HIGH_QUALITY}</li> * <li>{@link #NOISE_REDUCTION_MODE_MINIMAL MINIMAL}</li> * <li>{@link #NOISE_REDUCTION_MODE_ZERO_SHUTTER_LAG ZERO_SHUTTER_LAG}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES android.noiseReduction.availableNoiseReductionModes}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES * @see CaptureRequest#REPROCESS_EFFECTIVE_EXPOSURE_FACTOR * @see #NOISE_REDUCTION_MODE_OFF * @see #NOISE_REDUCTION_MODE_FAST * @see #NOISE_REDUCTION_MODE_HIGH_QUALITY * @see #NOISE_REDUCTION_MODE_MINIMAL * @see #NOISE_REDUCTION_MODE_ZERO_SHUTTER_LAG */ @PublicKey public static final Key<Integer> NOISE_REDUCTION_MODE = new Key<Integer>("android.noiseReduction.mode", int.class); /** * <p>Whether a result given to the framework is the * final one for the capture, or only a partial that contains a * subset of the full set of dynamic metadata * values.</p> * <p>The entries in the result metadata buffers for a * single capture may not overlap, except for this entry. The * FINAL buffers must retain FIFO ordering relative to the * requests that generate them, so the FINAL buffer for frame 3 must * always be sent to the framework after the FINAL buffer for frame 2, and * before the FINAL buffer for frame 4. PARTIAL buffers may be returned * in any order relative to other frames, but all PARTIAL buffers for a given * capture must arrive before the FINAL buffer for that capture. This entry may * only be used by the camera device if quirks.usePartialResult is set to 1.</p> * <p><b>Range of valid values:</b><br> * Optional. Default value is FINAL.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * @deprecated * @hide */ @Deprecated public static final Key<Boolean> QUIRKS_PARTIAL_RESULT = new Key<Boolean>("android.quirks.partialResult", boolean.class); /** * <p>A frame counter set by the framework. This value monotonically * increases with every new result (that is, each new result has a unique * frameCount value).</p> * <p>Reset on release()</p> * <p><b>Units</b>: count of frames</p> * <p><b>Range of valid values:</b><br> * > 0</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * @deprecated * @hide */ @Deprecated public static final Key<Integer> REQUEST_FRAME_COUNT = new Key<Integer>("android.request.frameCount", int.class); /** * <p>An application-specified ID for the current * request. Must be maintained unchanged in output * frame</p> * <p><b>Units</b>: arbitrary integer assigned by application</p> * <p><b>Range of valid values:</b><br> * Any int</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * @hide */ public static final Key<Integer> REQUEST_ID = new Key<Integer>("android.request.id", int.class); /** * <p>Specifies the number of pipeline stages the frame went * through from when it was exposed to when the final completed result * was available to the framework.</p> * <p>Depending on what settings are used in the request, and * what streams are configured, the data may undergo less processing, * and some pipeline stages skipped.</p> * <p>See {@link CameraCharacteristics#REQUEST_PIPELINE_MAX_DEPTH android.request.pipelineMaxDepth} for more details.</p> * <p><b>Range of valid values:</b><br> * <= {@link CameraCharacteristics#REQUEST_PIPELINE_MAX_DEPTH android.request.pipelineMaxDepth}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#REQUEST_PIPELINE_MAX_DEPTH */ @PublicKey public static final Key<Byte> REQUEST_PIPELINE_DEPTH = new Key<Byte>("android.request.pipelineDepth", byte.class); /** * <p>The desired region of the sensor to read out for this capture.</p> * <p>This control can be used to implement digital zoom.</p> * <p>The crop region coordinate system is based off * {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}, with <code>(0, 0)</code> being the * top-left corner of the sensor active array.</p> * <p>Output streams use this rectangle to produce their output, * cropping to a smaller region if necessary to maintain the * stream's aspect ratio, then scaling the sensor input to * match the output's configured resolution.</p> * <p>The crop region is applied after the RAW to other color * space (e.g. YUV) conversion. Since raw streams * (e.g. RAW16) don't have the conversion stage, they are not * croppable. The crop region will be ignored by raw streams.</p> * <p>For non-raw streams, any additional per-stream cropping will * be done to maximize the final pixel area of the stream.</p> * <p>For example, if the crop region is set to a 4:3 aspect * ratio, then 4:3 streams will use the exact crop * region. 16:9 streams will further crop vertically * (letterbox).</p> * <p>Conversely, if the crop region is set to a 16:9, then 4:3 * outputs will crop horizontally (pillarbox), and 16:9 * streams will match exactly. These additional crops will * be centered within the crop region.</p> * <p>The width and height of the crop region cannot * be set to be smaller than * <code>floor( activeArraySize.width / {@link CameraCharacteristics#SCALER_AVAILABLE_MAX_DIGITAL_ZOOM android.scaler.availableMaxDigitalZoom} )</code> and * <code>floor( activeArraySize.height / {@link CameraCharacteristics#SCALER_AVAILABLE_MAX_DIGITAL_ZOOM android.scaler.availableMaxDigitalZoom} )</code>, respectively.</p> * <p>The camera device may adjust the crop region to account * for rounding and other hardware requirements; the final * crop region used will be included in the output capture * result.</p> * <p><b>Units</b>: Pixel coordinates relative to * {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#SCALER_AVAILABLE_MAX_DIGITAL_ZOOM * @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE */ @PublicKey public static final Key<android.graphics.Rect> SCALER_CROP_REGION = new Key<android.graphics.Rect>("android.scaler.cropRegion", android.graphics.Rect.class); /** * <p>Duration each pixel is exposed to * light.</p> * <p>If the sensor can't expose this exact duration, it will shorten the * duration exposed to the nearest possible value (rather than expose longer). * The final exposure time used will be available in the output capture result.</p> * <p>This control is only effective if {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} or {@link CaptureRequest#CONTROL_MODE android.control.mode} is set to * OFF; otherwise the auto-exposure algorithm will override this value.</p> * <p><b>Units</b>: Nanoseconds</p> * <p><b>Range of valid values:</b><br> * {@link CameraCharacteristics#SENSOR_INFO_EXPOSURE_TIME_RANGE android.sensor.info.exposureTimeRange}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#SENSOR_INFO_EXPOSURE_TIME_RANGE */ @PublicKey public static final Key<Long> SENSOR_EXPOSURE_TIME = new Key<Long>("android.sensor.exposureTime", long.class); /** * <p>Duration from start of frame exposure to * start of next frame exposure.</p> * <p>The maximum frame rate that can be supported by a camera subsystem is * a function of many factors:</p> * <ul> * <li>Requested resolutions of output image streams</li> * <li>Availability of binning / skipping modes on the imager</li> * <li>The bandwidth of the imager interface</li> * <li>The bandwidth of the various ISP processing blocks</li> * </ul> * <p>Since these factors can vary greatly between different ISPs and * sensors, the camera abstraction tries to represent the bandwidth * restrictions with as simple a model as possible.</p> * <p>The model presented has the following characteristics:</p> * <ul> * <li>The image sensor is always configured to output the smallest * resolution possible given the application's requested output stream * sizes. The smallest resolution is defined as being at least as large * as the largest requested output stream size; the camera pipeline must * never digitally upsample sensor data when the crop region covers the * whole sensor. In general, this means that if only small output stream * resolutions are configured, the sensor can provide a higher frame * rate.</li> * <li>Since any request may use any or all the currently configured * output streams, the sensor and ISP must be configured to support * scaling a single capture to all the streams at the same time. This * means the camera pipeline must be ready to produce the largest * requested output size without any delay. Therefore, the overall * frame rate of a given configured stream set is governed only by the * largest requested stream resolution.</li> * <li>Using more than one output stream in a request does not affect the * frame duration.</li> * <li>Certain format-streams may need to do additional background processing * before data is consumed/produced by that stream. These processors * can run concurrently to the rest of the camera pipeline, but * cannot process more than 1 capture at a time.</li> * </ul> * <p>The necessary information for the application, given the model above, * is provided via the {@link CameraCharacteristics#SCALER_STREAM_CONFIGURATION_MAP android.scaler.streamConfigurationMap} field using * {@link android.hardware.camera2.params.StreamConfigurationMap#getOutputMinFrameDuration }. * These are used to determine the maximum frame rate / minimum frame * duration that is possible for a given stream configuration.</p> * <p>Specifically, the application can use the following rules to * determine the minimum frame duration it can request from the camera * device:</p> * <ol> * <li>Let the set of currently configured input/output streams * be called <code>S</code>.</li> * <li>Find the minimum frame durations for each stream in <code>S</code>, by looking * it up in {@link CameraCharacteristics#SCALER_STREAM_CONFIGURATION_MAP android.scaler.streamConfigurationMap} using {@link android.hardware.camera2.params.StreamConfigurationMap#getOutputMinFrameDuration } * (with its respective size/format). Let this set of frame durations be * called <code>F</code>.</li> * <li>For any given request <code>R</code>, the minimum frame duration allowed * for <code>R</code> is the maximum out of all values in <code>F</code>. Let the streams * used in <code>R</code> be called <code>S_r</code>.</li> * </ol> * <p>If none of the streams in <code>S_r</code> have a stall time (listed in {@link android.hardware.camera2.params.StreamConfigurationMap#getOutputStallDuration } * using its respective size/format), then the frame duration in <code>F</code> * determines the steady state frame rate that the application will get * if it uses <code>R</code> as a repeating request. Let this special kind of * request be called <code>Rsimple</code>.</p> * <p>A repeating request <code>Rsimple</code> can be <em>occasionally</em> interleaved * by a single capture of a new request <code>Rstall</code> (which has at least * one in-use stream with a non-0 stall time) and if <code>Rstall</code> has the * same minimum frame duration this will not cause a frame rate loss * if all buffers from the previous <code>Rstall</code> have already been * delivered.</p> * <p>For more details about stalling, see * {@link android.hardware.camera2.params.StreamConfigurationMap#getOutputStallDuration }.</p> * <p>This control is only effective if {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} or {@link CaptureRequest#CONTROL_MODE android.control.mode} is set to * OFF; otherwise the auto-exposure algorithm will override this value.</p> * <p><b>Units</b>: Nanoseconds</p> * <p><b>Range of valid values:</b><br> * See {@link CameraCharacteristics#SENSOR_INFO_MAX_FRAME_DURATION android.sensor.info.maxFrameDuration}, * {@link CameraCharacteristics#SCALER_STREAM_CONFIGURATION_MAP android.scaler.streamConfigurationMap}. The duration * is capped to <code>max(duration, exposureTime + overhead)</code>.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#SCALER_STREAM_CONFIGURATION_MAP * @see CameraCharacteristics#SENSOR_INFO_MAX_FRAME_DURATION */ @PublicKey public static final Key<Long> SENSOR_FRAME_DURATION = new Key<Long>("android.sensor.frameDuration", long.class); /** * <p>The amount of gain applied to sensor data * before processing.</p> * <p>The sensitivity is the standard ISO sensitivity value, * as defined in ISO 12232:2006.</p> * <p>The sensitivity must be within {@link CameraCharacteristics#SENSOR_INFO_SENSITIVITY_RANGE android.sensor.info.sensitivityRange}, and * if if it less than {@link CameraCharacteristics#SENSOR_MAX_ANALOG_SENSITIVITY android.sensor.maxAnalogSensitivity}, the camera device * is guaranteed to use only analog amplification for applying the gain.</p> * <p>If the camera device cannot apply the exact sensitivity * requested, it will reduce the gain to the nearest supported * value. The final sensitivity used will be available in the * output capture result.</p> * <p>This control is only effective if {@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} or {@link CaptureRequest#CONTROL_MODE android.control.mode} is set to * OFF; otherwise the auto-exposure algorithm will override this value.</p> * <p><b>Units</b>: ISO arithmetic units</p> * <p><b>Range of valid values:</b><br> * {@link CameraCharacteristics#SENSOR_INFO_SENSITIVITY_RANGE android.sensor.info.sensitivityRange}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#SENSOR_INFO_SENSITIVITY_RANGE * @see CameraCharacteristics#SENSOR_MAX_ANALOG_SENSITIVITY */ @PublicKey public static final Key<Integer> SENSOR_SENSITIVITY = new Key<Integer>("android.sensor.sensitivity", int.class); /** * <p>Time at start of exposure of first * row of the image sensor active array, in nanoseconds.</p> * <p>The timestamps are also included in all image * buffers produced for the same capture, and will be identical * on all the outputs.</p> * <p>When {@link CameraCharacteristics#SENSOR_INFO_TIMESTAMP_SOURCE android.sensor.info.timestampSource} <code>==</code> UNKNOWN, * the timestamps measure time since an unspecified starting point, * and are monotonically increasing. They can be compared with the * timestamps for other captures from the same camera device, but are * not guaranteed to be comparable to any other time source.</p> * <p>When {@link CameraCharacteristics#SENSOR_INFO_TIMESTAMP_SOURCE android.sensor.info.timestampSource} <code>==</code> REALTIME, the * timestamps measure time in the same timebase as {@link android.os.SystemClock#elapsedRealtimeNanos }, and they can * be compared to other timestamps from other subsystems that * are using that base.</p> * <p>For reprocessing, the timestamp will match the start of exposure of * the input image, i.e. {@link CaptureResult#SENSOR_TIMESTAMP the * timestamp} in the TotalCaptureResult that was used to create the * reprocess capture request.</p> * <p><b>Units</b>: Nanoseconds</p> * <p><b>Range of valid values:</b><br> * > 0</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#SENSOR_INFO_TIMESTAMP_SOURCE */ @PublicKey public static final Key<Long> SENSOR_TIMESTAMP = new Key<Long>("android.sensor.timestamp", long.class); /** * <p>The estimated camera neutral color in the native sensor colorspace at * the time of capture.</p> * <p>This value gives the neutral color point encoded as an RGB value in the * native sensor color space. The neutral color point indicates the * currently estimated white point of the scene illumination. It can be * used to interpolate between the provided color transforms when * processing raw sensor data.</p> * <p>The order of the values is R, G, B; where R is in the lowest index.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> */ @PublicKey public static final Key<Rational[]> SENSOR_NEUTRAL_COLOR_POINT = new Key<Rational[]>("android.sensor.neutralColorPoint", Rational[].class); /** * <p>Noise model coefficients for each CFA mosaic channel.</p> * <p>This key contains two noise model coefficients for each CFA channel * corresponding to the sensor amplification (S) and sensor readout * noise (O). These are given as pairs of coefficients for each channel * in the same order as channels listed for the CFA layout key * (see {@link CameraCharacteristics#SENSOR_INFO_COLOR_FILTER_ARRANGEMENT android.sensor.info.colorFilterArrangement}). This is * represented as an array of Pair<Double, Double>, where * the first member of the Pair at index n is the S coefficient and the * second member is the O coefficient for the nth color channel in the CFA.</p> * <p>These coefficients are used in a two parameter noise model to describe * the amount of noise present in the image for each CFA channel. The * noise model used here is:</p> * <p>N(x) = sqrt(Sx + O)</p> * <p>Where x represents the recorded signal of a CFA channel normalized to * the range [0, 1], and S and O are the noise model coeffiecients for * that channel.</p> * <p>A more detailed description of the noise model can be found in the * Adobe DNG specification for the NoiseProfile tag.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#SENSOR_INFO_COLOR_FILTER_ARRANGEMENT */ @PublicKey public static final Key<android.util.Pair<Double,Double>[]> SENSOR_NOISE_PROFILE = new Key<android.util.Pair<Double,Double>[]>("android.sensor.noiseProfile", new TypeReference<android.util.Pair<Double,Double>[]>() {{ }}); /** * <p>The worst-case divergence between Bayer green channels.</p> * <p>This value is an estimate of the worst case split between the * Bayer green channels in the red and blue rows in the sensor color * filter array.</p> * <p>The green split is calculated as follows:</p> * <ol> * <li>A 5x5 pixel (or larger) window W within the active sensor array is * chosen. The term 'pixel' here is taken to mean a group of 4 Bayer * mosaic channels (R, Gr, Gb, B). The location and size of the window * chosen is implementation defined, and should be chosen to provide a * green split estimate that is both representative of the entire image * for this camera sensor, and can be calculated quickly.</li> * <li>The arithmetic mean of the green channels from the red * rows (mean_Gr) within W is computed.</li> * <li>The arithmetic mean of the green channels from the blue * rows (mean_Gb) within W is computed.</li> * <li>The maximum ratio R of the two means is computed as follows: * <code>R = max((mean_Gr + 1)/(mean_Gb + 1), (mean_Gb + 1)/(mean_Gr + 1))</code></li> * </ol> * <p>The ratio R is the green split divergence reported for this property, * which represents how much the green channels differ in the mosaic * pattern. This value is typically used to determine the treatment of * the green mosaic channels when demosaicing.</p> * <p>The green split value can be roughly interpreted as follows:</p> * <ul> * <li>R < 1.03 is a negligible split (<3% divergence).</li> * <li>1.20 <= R >= 1.03 will require some software * correction to avoid demosaic errors (3-20% divergence).</li> * <li>R > 1.20 will require strong software correction to produce * a usuable image (>20% divergence).</li> * </ul> * <p><b>Range of valid values:</b><br></p> * <p>>= 0</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> */ @PublicKey public static final Key<Float> SENSOR_GREEN_SPLIT = new Key<Float>("android.sensor.greenSplit", float.class); /** * <p>A pixel <code>[R, G_even, G_odd, B]</code> that supplies the test pattern * when {@link CaptureRequest#SENSOR_TEST_PATTERN_MODE android.sensor.testPatternMode} is SOLID_COLOR.</p> * <p>Each color channel is treated as an unsigned 32-bit integer. * The camera device then uses the most significant X bits * that correspond to how many bits are in its Bayer raw sensor * output.</p> * <p>For example, a sensor with RAW10 Bayer output would use the * 10 most significant bits from each color channel.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CaptureRequest#SENSOR_TEST_PATTERN_MODE */ @PublicKey public static final Key<int[]> SENSOR_TEST_PATTERN_DATA = new Key<int[]>("android.sensor.testPatternData", int[].class); /** * <p>When enabled, the sensor sends a test pattern instead of * doing a real exposure from the camera.</p> * <p>When a test pattern is enabled, all manual sensor controls specified * by android.sensor.* will be ignored. All other controls should * work as normal.</p> * <p>For example, if manual flash is enabled, flash firing should still * occur (and that the test pattern remain unmodified, since the flash * would not actually affect it).</p> * <p>Defaults to OFF.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #SENSOR_TEST_PATTERN_MODE_OFF OFF}</li> * <li>{@link #SENSOR_TEST_PATTERN_MODE_SOLID_COLOR SOLID_COLOR}</li> * <li>{@link #SENSOR_TEST_PATTERN_MODE_COLOR_BARS COLOR_BARS}</li> * <li>{@link #SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY COLOR_BARS_FADE_TO_GRAY}</li> * <li>{@link #SENSOR_TEST_PATTERN_MODE_PN9 PN9}</li> * <li>{@link #SENSOR_TEST_PATTERN_MODE_CUSTOM1 CUSTOM1}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#SENSOR_AVAILABLE_TEST_PATTERN_MODES android.sensor.availableTestPatternModes}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#SENSOR_AVAILABLE_TEST_PATTERN_MODES * @see #SENSOR_TEST_PATTERN_MODE_OFF * @see #SENSOR_TEST_PATTERN_MODE_SOLID_COLOR * @see #SENSOR_TEST_PATTERN_MODE_COLOR_BARS * @see #SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY * @see #SENSOR_TEST_PATTERN_MODE_PN9 * @see #SENSOR_TEST_PATTERN_MODE_CUSTOM1 */ @PublicKey public static final Key<Integer> SENSOR_TEST_PATTERN_MODE = new Key<Integer>("android.sensor.testPatternMode", int.class); /** * <p>Duration between the start of first row exposure * and the start of last row exposure.</p> * <p>This is the exposure time skew between the first and last * row exposure start times. The first row and the last row are * the first and last rows inside of the * {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.</p> * <p>For typical camera sensors that use rolling shutters, this is also equivalent * to the frame readout time.</p> * <p><b>Units</b>: Nanoseconds</p> * <p><b>Range of valid values:</b><br> * >= 0 and < * {@link android.hardware.camera2.params.StreamConfigurationMap#getOutputMinFrameDuration }.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Limited capability</b> - * Present on all camera devices that report being at least {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED HARDWARE_LEVEL_LIMITED} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE */ @PublicKey public static final Key<Long> SENSOR_ROLLING_SHUTTER_SKEW = new Key<Long>("android.sensor.rollingShutterSkew", long.class); /** * <p>A per-frame dynamic black level offset for each of the color filter * arrangement (CFA) mosaic channels.</p> * <p>Camera sensor black levels may vary dramatically for different * capture settings (e.g. {@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity}). The fixed black * level reported by {@link CameraCharacteristics#SENSOR_BLACK_LEVEL_PATTERN android.sensor.blackLevelPattern} may be too * inaccurate to represent the actual value on a per-frame basis. The * camera device internal pipeline relies on reliable black level values * to process the raw images appropriately. To get the best image * quality, the camera device may choose to estimate the per frame black * level values either based on optically shielded black regions * ({@link CameraCharacteristics#SENSOR_OPTICAL_BLACK_REGIONS android.sensor.opticalBlackRegions}) or its internal model.</p> * <p>This key reports the camera device estimated per-frame zero light * value for each of the CFA mosaic channels in the camera sensor. The * {@link CameraCharacteristics#SENSOR_BLACK_LEVEL_PATTERN android.sensor.blackLevelPattern} may only represent a coarse * approximation of the actual black level values. This value is the * black level used in camera device internal image processing pipeline * and generally more accurate than the fixed black level values. * However, since they are estimated values by the camera device, they * may not be as accurate as the black level values calculated from the * optical black pixels reported by {@link CameraCharacteristics#SENSOR_OPTICAL_BLACK_REGIONS android.sensor.opticalBlackRegions}.</p> * <p>The values are given in the same order as channels listed for the CFA * layout key (see {@link CameraCharacteristics#SENSOR_INFO_COLOR_FILTER_ARRANGEMENT android.sensor.info.colorFilterArrangement}), i.e. the * nth value given corresponds to the black level offset for the nth * color channel listed in the CFA.</p> * <p>This key will be available if {@link CameraCharacteristics#SENSOR_OPTICAL_BLACK_REGIONS android.sensor.opticalBlackRegions} is * available or the camera device advertises this key via * {@link android.hardware.camera2.CameraCharacteristics#getAvailableCaptureResultKeys }.</p> * <p><b>Range of valid values:</b><br> * >= 0 for each.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#SENSOR_BLACK_LEVEL_PATTERN * @see CameraCharacteristics#SENSOR_INFO_COLOR_FILTER_ARRANGEMENT * @see CameraCharacteristics#SENSOR_OPTICAL_BLACK_REGIONS * @see CaptureRequest#SENSOR_SENSITIVITY */ @PublicKey public static final Key<float[]> SENSOR_DYNAMIC_BLACK_LEVEL = new Key<float[]>("android.sensor.dynamicBlackLevel", float[].class); /** * <p>Maximum raw value output by sensor for this frame.</p> * <p>Since the {@link CameraCharacteristics#SENSOR_BLACK_LEVEL_PATTERN android.sensor.blackLevelPattern} may change for different * capture settings (e.g., {@link CaptureRequest#SENSOR_SENSITIVITY android.sensor.sensitivity}), the white * level will change accordingly. This key is similar to * {@link CameraCharacteristics#SENSOR_INFO_WHITE_LEVEL android.sensor.info.whiteLevel}, but specifies the camera device * estimated white level for each frame.</p> * <p>This key will be available if {@link CameraCharacteristics#SENSOR_OPTICAL_BLACK_REGIONS android.sensor.opticalBlackRegions} is * available or the camera device advertises this key via * {@link android.hardware.camera2.CameraCharacteristics#getAvailableCaptureRequestKeys }.</p> * <p><b>Range of valid values:</b><br> * >= 0</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#SENSOR_BLACK_LEVEL_PATTERN * @see CameraCharacteristics#SENSOR_INFO_WHITE_LEVEL * @see CameraCharacteristics#SENSOR_OPTICAL_BLACK_REGIONS * @see CaptureRequest#SENSOR_SENSITIVITY */ @PublicKey public static final Key<Integer> SENSOR_DYNAMIC_WHITE_LEVEL = new Key<Integer>("android.sensor.dynamicWhiteLevel", int.class); /** * <p>Quality of lens shading correction applied * to the image data.</p> * <p>When set to OFF mode, no lens shading correction will be applied by the * camera device, and an identity lens shading map data will be provided * if <code>{@link CaptureRequest#STATISTICS_LENS_SHADING_MAP_MODE android.statistics.lensShadingMapMode} == ON</code>. For example, for lens * shading map with size of <code>[ 4, 3 ]</code>, * the output {@link CaptureResult#STATISTICS_LENS_SHADING_CORRECTION_MAP android.statistics.lensShadingCorrectionMap} for this case will be an identity * map shown below:</p> * <pre><code>[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, * 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, * 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, * 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, * 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, * 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] * </code></pre> * <p>When set to other modes, lens shading correction will be applied by the camera * device. Applications can request lens shading map data by setting * {@link CaptureRequest#STATISTICS_LENS_SHADING_MAP_MODE android.statistics.lensShadingMapMode} to ON, and then the camera device will provide lens * shading map data in {@link CaptureResult#STATISTICS_LENS_SHADING_CORRECTION_MAP android.statistics.lensShadingCorrectionMap}; the returned shading map * data will be the one applied by the camera device for this capture request.</p> * <p>The shading map data may depend on the auto-exposure (AE) and AWB statistics, therefore * the reliability of the map data may be affected by the AE and AWB algorithms. When AE and * AWB are in AUTO modes({@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} <code>!=</code> OFF and {@link CaptureRequest#CONTROL_AWB_MODE android.control.awbMode} <code>!=</code> * OFF), to get best results, it is recommended that the applications wait for the AE and AWB * to be converged before using the returned shading map data.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #SHADING_MODE_OFF OFF}</li> * <li>{@link #SHADING_MODE_FAST FAST}</li> * <li>{@link #SHADING_MODE_HIGH_QUALITY HIGH_QUALITY}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#SHADING_AVAILABLE_MODES android.shading.availableModes}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_AWB_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#SHADING_AVAILABLE_MODES * @see CaptureResult#STATISTICS_LENS_SHADING_CORRECTION_MAP * @see CaptureRequest#STATISTICS_LENS_SHADING_MAP_MODE * @see #SHADING_MODE_OFF * @see #SHADING_MODE_FAST * @see #SHADING_MODE_HIGH_QUALITY */ @PublicKey public static final Key<Integer> SHADING_MODE = new Key<Integer>("android.shading.mode", int.class); /** * <p>Operating mode for the face detector * unit.</p> * <p>Whether face detection is enabled, and whether it * should output just the basic fields or the full set of * fields.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #STATISTICS_FACE_DETECT_MODE_OFF OFF}</li> * <li>{@link #STATISTICS_FACE_DETECT_MODE_SIMPLE SIMPLE}</li> * <li>{@link #STATISTICS_FACE_DETECT_MODE_FULL FULL}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES android.statistics.info.availableFaceDetectModes}</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES * @see #STATISTICS_FACE_DETECT_MODE_OFF * @see #STATISTICS_FACE_DETECT_MODE_SIMPLE * @see #STATISTICS_FACE_DETECT_MODE_FULL */ @PublicKey public static final Key<Integer> STATISTICS_FACE_DETECT_MODE = new Key<Integer>("android.statistics.faceDetectMode", int.class); /** * <p>List of unique IDs for detected faces.</p> * <p>Each detected face is given a unique ID that is valid for as long as the face is visible * to the camera device. A face that leaves the field of view and later returns may be * assigned a new ID.</p> * <p>Only available if {@link CaptureRequest#STATISTICS_FACE_DETECT_MODE android.statistics.faceDetectMode} == FULL * This key is available on all devices.</p> * * @see CaptureRequest#STATISTICS_FACE_DETECT_MODE * @hide */ public static final Key<int[]> STATISTICS_FACE_IDS = new Key<int[]>("android.statistics.faceIds", int[].class); /** * <p>List of landmarks for detected * faces.</p> * <p>The coordinate system is that of {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}, with * <code>(0, 0)</code> being the top-left pixel of the active array.</p> * <p>Only available if {@link CaptureRequest#STATISTICS_FACE_DETECT_MODE android.statistics.faceDetectMode} == FULL * This key is available on all devices.</p> * * @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE * @see CaptureRequest#STATISTICS_FACE_DETECT_MODE * @hide */ public static final Key<int[]> STATISTICS_FACE_LANDMARKS = new Key<int[]>("android.statistics.faceLandmarks", int[].class); /** * <p>List of the bounding rectangles for detected * faces.</p> * <p>The coordinate system is that of {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}, with * <code>(0, 0)</code> being the top-left pixel of the active array.</p> * <p>Only available if {@link CaptureRequest#STATISTICS_FACE_DETECT_MODE android.statistics.faceDetectMode} != OFF * This key is available on all devices.</p> * * @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE * @see CaptureRequest#STATISTICS_FACE_DETECT_MODE * @hide */ public static final Key<android.graphics.Rect[]> STATISTICS_FACE_RECTANGLES = new Key<android.graphics.Rect[]>("android.statistics.faceRectangles", android.graphics.Rect[].class); /** * <p>List of the face confidence scores for * detected faces</p> * <p>Only available if {@link CaptureRequest#STATISTICS_FACE_DETECT_MODE android.statistics.faceDetectMode} != OFF.</p> * <p><b>Range of valid values:</b><br> * 1-100</p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#STATISTICS_FACE_DETECT_MODE * @hide */ public static final Key<byte[]> STATISTICS_FACE_SCORES = new Key<byte[]>("android.statistics.faceScores", byte[].class); /** * <p>List of the faces detected through camera face detection * in this capture.</p> * <p>Only available if {@link CaptureRequest#STATISTICS_FACE_DETECT_MODE android.statistics.faceDetectMode} <code>!=</code> OFF.</p> * <p>This key is available on all devices.</p> * * @see CaptureRequest#STATISTICS_FACE_DETECT_MODE */ @PublicKey @SyntheticKey public static final Key<android.hardware.camera2.params.Face[]> STATISTICS_FACES = new Key<android.hardware.camera2.params.Face[]>("android.statistics.faces", android.hardware.camera2.params.Face[].class); /** * <p>The shading map is a low-resolution floating-point map * that lists the coefficients used to correct for vignetting, for each * Bayer color channel.</p> * <p>The map provided here is the same map that is used by the camera device to * correct both color shading and vignetting for output non-RAW images.</p> * <p>When there is no lens shading correction applied to RAW * output images ({@link CameraCharacteristics#SENSOR_INFO_LENS_SHADING_APPLIED android.sensor.info.lensShadingApplied} <code>==</code> * false), this map is the complete lens shading correction * map; when there is some lens shading correction applied to * the RAW output image ({@link CameraCharacteristics#SENSOR_INFO_LENS_SHADING_APPLIED android.sensor.info.lensShadingApplied}<code>==</code> true), this map reports the remaining lens shading * correction map that needs to be applied to get shading * corrected images that match the camera device's output for * non-RAW formats.</p> * <p>For a complete shading correction map, the least shaded * section of the image will have a gain factor of 1; all * other sections will have gains above 1.</p> * <p>When {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} = TRANSFORM_MATRIX, the map * will take into account the colorCorrection settings.</p> * <p>The shading map is for the entire active pixel array, and is not * affected by the crop region specified in the request. Each shading map * entry is the value of the shading compensation map over a specific * pixel on the sensor. Specifically, with a (N x M) resolution shading * map, and an active pixel array size (W x H), shading map entry * (x,y) ϵ (0 ... N-1, 0 ... M-1) is the value of the shading map at * pixel ( ((W-1)/(N-1)) * x, ((H-1)/(M-1)) * y) for the four color channels. * The map is assumed to be bilinearly interpolated between the sample points.</p> * <p>The channel order is [R, Geven, Godd, B], where Geven is the green * channel for the even rows of a Bayer pattern, and Godd is the odd rows. * The shading map is stored in a fully interleaved format.</p> * <p>The shading map will generally have on the order of 30-40 rows and columns, * and will be smaller than 64x64.</p> * <p>As an example, given a very small map defined as:</p> * <pre><code>width,height = [ 4, 3 ] * values = * [ 1.3, 1.2, 1.15, 1.2, 1.2, 1.2, 1.15, 1.2, * 1.1, 1.2, 1.2, 1.2, 1.3, 1.2, 1.3, 1.3, * 1.2, 1.2, 1.25, 1.1, 1.1, 1.1, 1.1, 1.0, * 1.0, 1.0, 1.0, 1.0, 1.2, 1.3, 1.25, 1.2, * 1.3, 1.2, 1.2, 1.3, 1.2, 1.15, 1.1, 1.2, * 1.2, 1.1, 1.0, 1.2, 1.3, 1.15, 1.2, 1.3 ] * </code></pre> * <p>The low-resolution scaling map images for each channel are * (displayed using nearest-neighbor interpolation):</p> * <p><img alt="Red lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/red_shading.png" /> * <img alt="Green (even rows) lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/green_e_shading.png" /> * <img alt="Green (odd rows) lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/green_o_shading.png" /> * <img alt="Blue lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/blue_shading.png" /></p> * <p>As a visualization only, inverting the full-color map to recover an * image of a gray wall (using bicubic interpolation for visual quality) as captured by the sensor gives:</p> * <p><img alt="Image of a uniform white wall (inverse shading map)" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/inv_shading.png" /></p> * <p><b>Range of valid values:</b><br> * Each gain factor is >= 1</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#COLOR_CORRECTION_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#SENSOR_INFO_LENS_SHADING_APPLIED */ @PublicKey public static final Key<android.hardware.camera2.params.LensShadingMap> STATISTICS_LENS_SHADING_CORRECTION_MAP = new Key<android.hardware.camera2.params.LensShadingMap>("android.statistics.lensShadingCorrectionMap", android.hardware.camera2.params.LensShadingMap.class); /** * <p>The shading map is a low-resolution floating-point map * that lists the coefficients used to correct for vignetting and color shading, * for each Bayer color channel of RAW image data.</p> * <p>The map provided here is the same map that is used by the camera device to * correct both color shading and vignetting for output non-RAW images.</p> * <p>When there is no lens shading correction applied to RAW * output images ({@link CameraCharacteristics#SENSOR_INFO_LENS_SHADING_APPLIED android.sensor.info.lensShadingApplied} <code>==</code> * false), this map is the complete lens shading correction * map; when there is some lens shading correction applied to * the RAW output image ({@link CameraCharacteristics#SENSOR_INFO_LENS_SHADING_APPLIED android.sensor.info.lensShadingApplied}<code>==</code> true), this map reports the remaining lens shading * correction map that needs to be applied to get shading * corrected images that match the camera device's output for * non-RAW formats.</p> * <p>For a complete shading correction map, the least shaded * section of the image will have a gain factor of 1; all * other sections will have gains above 1.</p> * <p>When {@link CaptureRequest#COLOR_CORRECTION_MODE android.colorCorrection.mode} = TRANSFORM_MATRIX, the map * will take into account the colorCorrection settings.</p> * <p>The shading map is for the entire active pixel array, and is not * affected by the crop region specified in the request. Each shading map * entry is the value of the shading compensation map over a specific * pixel on the sensor. Specifically, with a (N x M) resolution shading * map, and an active pixel array size (W x H), shading map entry * (x,y) ϵ (0 ... N-1, 0 ... M-1) is the value of the shading map at * pixel ( ((W-1)/(N-1)) * x, ((H-1)/(M-1)) * y) for the four color channels. * The map is assumed to be bilinearly interpolated between the sample points.</p> * <p>The channel order is [R, Geven, Godd, B], where Geven is the green * channel for the even rows of a Bayer pattern, and Godd is the odd rows. * The shading map is stored in a fully interleaved format, and its size * is provided in the camera static metadata by android.lens.info.shadingMapSize.</p> * <p>The shading map will generally have on the order of 30-40 rows and columns, * and will be smaller than 64x64.</p> * <p>As an example, given a very small map defined as:</p> * <pre><code>android.lens.info.shadingMapSize = [ 4, 3 ] * android.statistics.lensShadingMap = * [ 1.3, 1.2, 1.15, 1.2, 1.2, 1.2, 1.15, 1.2, * 1.1, 1.2, 1.2, 1.2, 1.3, 1.2, 1.3, 1.3, * 1.2, 1.2, 1.25, 1.1, 1.1, 1.1, 1.1, 1.0, * 1.0, 1.0, 1.0, 1.0, 1.2, 1.3, 1.25, 1.2, * 1.3, 1.2, 1.2, 1.3, 1.2, 1.15, 1.1, 1.2, * 1.2, 1.1, 1.0, 1.2, 1.3, 1.15, 1.2, 1.3 ] * </code></pre> * <p>The low-resolution scaling map images for each channel are * (displayed using nearest-neighbor interpolation):</p> * <p><img alt="Red lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/red_shading.png" /> * <img alt="Green (even rows) lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/green_e_shading.png" /> * <img alt="Green (odd rows) lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/green_o_shading.png" /> * <img alt="Blue lens shading map" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/blue_shading.png" /></p> * <p>As a visualization only, inverting the full-color map to recover an * image of a gray wall (using bicubic interpolation for visual quality) * as captured by the sensor gives:</p> * <p><img alt="Image of a uniform white wall (inverse shading map)" src="../../../../images/camera2/metadata/android.statistics.lensShadingMap/inv_shading.png" /></p> * <p>Note that the RAW image data might be subject to lens shading * correction not reported on this map. Query * {@link CameraCharacteristics#SENSOR_INFO_LENS_SHADING_APPLIED android.sensor.info.lensShadingApplied} to see if RAW image data has subject * to lens shading correction. If {@link CameraCharacteristics#SENSOR_INFO_LENS_SHADING_APPLIED android.sensor.info.lensShadingApplied} * is TRUE, the RAW image data is subject to partial or full lens shading * correction. In the case full lens shading correction is applied to RAW * images, the gain factor map reported in this key will contain all 1.0 gains. * In other words, the map reported in this key is the remaining lens shading * that needs to be applied on the RAW image to get images without lens shading * artifacts. See {@link CameraCharacteristics#REQUEST_MAX_NUM_OUTPUT_RAW android.request.maxNumOutputRaw} for a list of RAW image * formats.</p> * <p><b>Range of valid values:</b><br> * Each gain factor is >= 1</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#COLOR_CORRECTION_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#REQUEST_MAX_NUM_OUTPUT_RAW * @see CameraCharacteristics#SENSOR_INFO_LENS_SHADING_APPLIED * @hide */ public static final Key<float[]> STATISTICS_LENS_SHADING_MAP = new Key<float[]>("android.statistics.lensShadingMap", float[].class); /** * <p>The best-fit color channel gains calculated * by the camera device's statistics units for the current output frame.</p> * <p>This may be different than the gains used for this frame, * since statistics processing on data from a new frame * typically completes after the transform has already been * applied to that frame.</p> * <p>The 4 channel gains are defined in Bayer domain, * see {@link CaptureRequest#COLOR_CORRECTION_GAINS android.colorCorrection.gains} for details.</p> * <p>This value should always be calculated by the auto-white balance (AWB) block, * regardless of the android.control.* current values.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CaptureRequest#COLOR_CORRECTION_GAINS * @deprecated * @hide */ @Deprecated public static final Key<float[]> STATISTICS_PREDICTED_COLOR_GAINS = new Key<float[]>("android.statistics.predictedColorGains", float[].class); /** * <p>The best-fit color transform matrix estimate * calculated by the camera device's statistics units for the current * output frame.</p> * <p>The camera device will provide the estimate from its * statistics unit on the white balance transforms to use * for the next frame. These are the values the camera device believes * are the best fit for the current output frame. This may * be different than the transform used for this frame, since * statistics processing on data from a new frame typically * completes after the transform has already been applied to * that frame.</p> * <p>These estimates must be provided for all frames, even if * capture settings and color transforms are set by the application.</p> * <p>This value should always be calculated by the auto-white balance (AWB) block, * regardless of the android.control.* current values.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * @deprecated * @hide */ @Deprecated public static final Key<Rational[]> STATISTICS_PREDICTED_COLOR_TRANSFORM = new Key<Rational[]>("android.statistics.predictedColorTransform", Rational[].class); /** * <p>The camera device estimated scene illumination lighting * frequency.</p> * <p>Many light sources, such as most fluorescent lights, flicker at a rate * that depends on the local utility power standards. This flicker must be * accounted for by auto-exposure routines to avoid artifacts in captured images. * The camera device uses this entry to tell the application what the scene * illuminant frequency is.</p> * <p>When manual exposure control is enabled * (<code>{@link CaptureRequest#CONTROL_AE_MODE android.control.aeMode} == OFF</code> or <code>{@link CaptureRequest#CONTROL_MODE android.control.mode} == * OFF</code>), the {@link CaptureRequest#CONTROL_AE_ANTIBANDING_MODE android.control.aeAntibandingMode} doesn't perform * antibanding, and the application can ensure it selects * exposure times that do not cause banding issues by looking * into this metadata field. See * {@link CaptureRequest#CONTROL_AE_ANTIBANDING_MODE android.control.aeAntibandingMode} for more details.</p> * <p>Reports NONE if there doesn't appear to be flickering illumination.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #STATISTICS_SCENE_FLICKER_NONE NONE}</li> * <li>{@link #STATISTICS_SCENE_FLICKER_50HZ 50HZ}</li> * <li>{@link #STATISTICS_SCENE_FLICKER_60HZ 60HZ}</li> * </ul></p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#CONTROL_AE_ANTIBANDING_MODE * @see CaptureRequest#CONTROL_AE_MODE * @see CaptureRequest#CONTROL_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see #STATISTICS_SCENE_FLICKER_NONE * @see #STATISTICS_SCENE_FLICKER_50HZ * @see #STATISTICS_SCENE_FLICKER_60HZ */ @PublicKey public static final Key<Integer> STATISTICS_SCENE_FLICKER = new Key<Integer>("android.statistics.sceneFlicker", int.class); /** * <p>Operating mode for hot pixel map generation.</p> * <p>If set to <code>true</code>, a hot pixel map is returned in {@link CaptureResult#STATISTICS_HOT_PIXEL_MAP android.statistics.hotPixelMap}. * If set to <code>false</code>, no hot pixel map will be returned.</p> * <p><b>Range of valid values:</b><br> * {@link CameraCharacteristics#STATISTICS_INFO_AVAILABLE_HOT_PIXEL_MAP_MODES android.statistics.info.availableHotPixelMapModes}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CaptureResult#STATISTICS_HOT_PIXEL_MAP * @see CameraCharacteristics#STATISTICS_INFO_AVAILABLE_HOT_PIXEL_MAP_MODES */ @PublicKey public static final Key<Boolean> STATISTICS_HOT_PIXEL_MAP_MODE = new Key<Boolean>("android.statistics.hotPixelMapMode", boolean.class); /** * <p>List of <code>(x, y)</code> coordinates of hot/defective pixels on the sensor.</p> * <p>A coordinate <code>(x, y)</code> must lie between <code>(0, 0)</code>, and * <code>(width - 1, height - 1)</code> (inclusive), which are the top-left and * bottom-right of the pixel array, respectively. The width and * height dimensions are given in {@link CameraCharacteristics#SENSOR_INFO_PIXEL_ARRAY_SIZE android.sensor.info.pixelArraySize}. * This may include hot pixels that lie outside of the active array * bounds given by {@link CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE android.sensor.info.activeArraySize}.</p> * <p><b>Range of valid values:</b><br></p> * <p>n <= number of pixels on the sensor. * The <code>(x, y)</code> coordinates must be bounded by * {@link CameraCharacteristics#SENSOR_INFO_PIXEL_ARRAY_SIZE android.sensor.info.pixelArraySize}.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CameraCharacteristics#SENSOR_INFO_ACTIVE_ARRAY_SIZE * @see CameraCharacteristics#SENSOR_INFO_PIXEL_ARRAY_SIZE */ @PublicKey public static final Key<android.graphics.Point[]> STATISTICS_HOT_PIXEL_MAP = new Key<android.graphics.Point[]>("android.statistics.hotPixelMap", android.graphics.Point[].class); /** * <p>Whether the camera device will output the lens * shading map in output result metadata.</p> * <p>When set to ON, * android.statistics.lensShadingMap will be provided in * the output result metadata.</p> * <p>ON is always supported on devices with the RAW capability.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #STATISTICS_LENS_SHADING_MAP_MODE_OFF OFF}</li> * <li>{@link #STATISTICS_LENS_SHADING_MAP_MODE_ON ON}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES android.statistics.info.availableLensShadingMapModes}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES * @see #STATISTICS_LENS_SHADING_MAP_MODE_OFF * @see #STATISTICS_LENS_SHADING_MAP_MODE_ON */ @PublicKey public static final Key<Integer> STATISTICS_LENS_SHADING_MAP_MODE = new Key<Integer>("android.statistics.lensShadingMapMode", int.class); /** * <p>Tonemapping / contrast / gamma curve for the blue * channel, to use when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is * CONTRAST_CURVE.</p> * <p>See android.tonemap.curveRed for more details.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CaptureRequest#TONEMAP_MODE * @hide */ public static final Key<float[]> TONEMAP_CURVE_BLUE = new Key<float[]>("android.tonemap.curveBlue", float[].class); /** * <p>Tonemapping / contrast / gamma curve for the green * channel, to use when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is * CONTRAST_CURVE.</p> * <p>See android.tonemap.curveRed for more details.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CaptureRequest#TONEMAP_MODE * @hide */ public static final Key<float[]> TONEMAP_CURVE_GREEN = new Key<float[]>("android.tonemap.curveGreen", float[].class); /** * <p>Tonemapping / contrast / gamma curve for the red * channel, to use when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is * CONTRAST_CURVE.</p> * <p>Each channel's curve is defined by an array of control points:</p> * <pre><code>android.tonemap.curveRed = * [ P0in, P0out, P1in, P1out, P2in, P2out, P3in, P3out, ..., PNin, PNout ] * 2 <= N <= {@link CameraCharacteristics#TONEMAP_MAX_CURVE_POINTS android.tonemap.maxCurvePoints}</code></pre> * <p>These are sorted in order of increasing <code>Pin</code>; it is * required that input values 0.0 and 1.0 are included in the list to * define a complete mapping. For input values between control points, * the camera device must linearly interpolate between the control * points.</p> * <p>Each curve can have an independent number of points, and the number * of points can be less than max (that is, the request doesn't have to * always provide a curve with number of points equivalent to * {@link CameraCharacteristics#TONEMAP_MAX_CURVE_POINTS android.tonemap.maxCurvePoints}).</p> * <p>A few examples, and their corresponding graphical mappings; these * only specify the red channel and the precision is limited to 4 * digits, for conciseness.</p> * <p>Linear mapping:</p> * <pre><code>android.tonemap.curveRed = [ 0, 0, 1.0, 1.0 ] * </code></pre> * <p><img alt="Linear mapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/linear_tonemap.png" /></p> * <p>Invert mapping:</p> * <pre><code>android.tonemap.curveRed = [ 0, 1.0, 1.0, 0 ] * </code></pre> * <p><img alt="Inverting mapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/inverse_tonemap.png" /></p> * <p>Gamma 1/2.2 mapping, with 16 control points:</p> * <pre><code>android.tonemap.curveRed = [ * 0.0000, 0.0000, 0.0667, 0.2920, 0.1333, 0.4002, 0.2000, 0.4812, * 0.2667, 0.5484, 0.3333, 0.6069, 0.4000, 0.6594, 0.4667, 0.7072, * 0.5333, 0.7515, 0.6000, 0.7928, 0.6667, 0.8317, 0.7333, 0.8685, * 0.8000, 0.9035, 0.8667, 0.9370, 0.9333, 0.9691, 1.0000, 1.0000 ] * </code></pre> * <p><img alt="Gamma = 1/2.2 tonemapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/gamma_tonemap.png" /></p> * <p>Standard sRGB gamma mapping, per IEC 61966-2-1:1999, with 16 control points:</p> * <pre><code>android.tonemap.curveRed = [ * 0.0000, 0.0000, 0.0667, 0.2864, 0.1333, 0.4007, 0.2000, 0.4845, * 0.2667, 0.5532, 0.3333, 0.6125, 0.4000, 0.6652, 0.4667, 0.7130, * 0.5333, 0.7569, 0.6000, 0.7977, 0.6667, 0.8360, 0.7333, 0.8721, * 0.8000, 0.9063, 0.8667, 0.9389, 0.9333, 0.9701, 1.0000, 1.0000 ] * </code></pre> * <p><img alt="sRGB tonemapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/srgb_tonemap.png" /></p> * <p><b>Range of valid values:</b><br> * 0-1 on both input and output coordinates, normalized * as a floating-point value such that 0 == black and 1 == white.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#TONEMAP_MAX_CURVE_POINTS * @see CaptureRequest#TONEMAP_MODE * @hide */ public static final Key<float[]> TONEMAP_CURVE_RED = new Key<float[]>("android.tonemap.curveRed", float[].class); /** * <p>Tonemapping / contrast / gamma curve to use when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} * is CONTRAST_CURVE.</p> * <p>The tonemapCurve consist of three curves for each of red, green, and blue * channels respectively. The following example uses the red channel as an * example. The same logic applies to green and blue channel. * Each channel's curve is defined by an array of control points:</p> * <pre><code>curveRed = * [ P0(in, out), P1(in, out), P2(in, out), P3(in, out), ..., PN(in, out) ] * 2 <= N <= {@link CameraCharacteristics#TONEMAP_MAX_CURVE_POINTS android.tonemap.maxCurvePoints}</code></pre> * <p>These are sorted in order of increasing <code>Pin</code>; it is always * guaranteed that input values 0.0 and 1.0 are included in the list to * define a complete mapping. For input values between control points, * the camera device must linearly interpolate between the control * points.</p> * <p>Each curve can have an independent number of points, and the number * of points can be less than max (that is, the request doesn't have to * always provide a curve with number of points equivalent to * {@link CameraCharacteristics#TONEMAP_MAX_CURVE_POINTS android.tonemap.maxCurvePoints}).</p> * <p>A few examples, and their corresponding graphical mappings; these * only specify the red channel and the precision is limited to 4 * digits, for conciseness.</p> * <p>Linear mapping:</p> * <pre><code>curveRed = [ (0, 0), (1.0, 1.0) ] * </code></pre> * <p><img alt="Linear mapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/linear_tonemap.png" /></p> * <p>Invert mapping:</p> * <pre><code>curveRed = [ (0, 1.0), (1.0, 0) ] * </code></pre> * <p><img alt="Inverting mapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/inverse_tonemap.png" /></p> * <p>Gamma 1/2.2 mapping, with 16 control points:</p> * <pre><code>curveRed = [ * (0.0000, 0.0000), (0.0667, 0.2920), (0.1333, 0.4002), (0.2000, 0.4812), * (0.2667, 0.5484), (0.3333, 0.6069), (0.4000, 0.6594), (0.4667, 0.7072), * (0.5333, 0.7515), (0.6000, 0.7928), (0.6667, 0.8317), (0.7333, 0.8685), * (0.8000, 0.9035), (0.8667, 0.9370), (0.9333, 0.9691), (1.0000, 1.0000) ] * </code></pre> * <p><img alt="Gamma = 1/2.2 tonemapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/gamma_tonemap.png" /></p> * <p>Standard sRGB gamma mapping, per IEC 61966-2-1:1999, with 16 control points:</p> * <pre><code>curveRed = [ * (0.0000, 0.0000), (0.0667, 0.2864), (0.1333, 0.4007), (0.2000, 0.4845), * (0.2667, 0.5532), (0.3333, 0.6125), (0.4000, 0.6652), (0.4667, 0.7130), * (0.5333, 0.7569), (0.6000, 0.7977), (0.6667, 0.8360), (0.7333, 0.8721), * (0.8000, 0.9063), (0.8667, 0.9389), (0.9333, 0.9701), (1.0000, 1.0000) ] * </code></pre> * <p><img alt="sRGB tonemapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/srgb_tonemap.png" /></p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#TONEMAP_MAX_CURVE_POINTS * @see CaptureRequest#TONEMAP_MODE */ @PublicKey @SyntheticKey public static final Key<android.hardware.camera2.params.TonemapCurve> TONEMAP_CURVE = new Key<android.hardware.camera2.params.TonemapCurve>("android.tonemap.curve", android.hardware.camera2.params.TonemapCurve.class); /** * <p>High-level global contrast/gamma/tonemapping control.</p> * <p>When switching to an application-defined contrast curve by setting * {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} to CONTRAST_CURVE, the curve is defined * per-channel with a set of <code>(in, out)</code> points that specify the * mapping from input high-bit-depth pixel value to the output * low-bit-depth value. Since the actual pixel ranges of both input * and output may change depending on the camera pipeline, the values * are specified by normalized floating-point numbers.</p> * <p>More-complex color mapping operations such as 3D color look-up * tables, selective chroma enhancement, or other non-linear color * transforms will be disabled when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is * CONTRAST_CURVE.</p> * <p>When using either FAST or HIGH_QUALITY, the camera device will * emit its own tonemap curve in {@link CaptureRequest#TONEMAP_CURVE android.tonemap.curve}. * These values are always available, and as close as possible to the * actually used nonlinear/nonglobal transforms.</p> * <p>If a request is sent with CONTRAST_CURVE with the camera device's * provided curve in FAST or HIGH_QUALITY, the image's tonemap will be * roughly the same.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #TONEMAP_MODE_CONTRAST_CURVE CONTRAST_CURVE}</li> * <li>{@link #TONEMAP_MODE_FAST FAST}</li> * <li>{@link #TONEMAP_MODE_HIGH_QUALITY HIGH_QUALITY}</li> * <li>{@link #TONEMAP_MODE_GAMMA_VALUE GAMMA_VALUE}</li> * <li>{@link #TONEMAP_MODE_PRESET_CURVE PRESET_CURVE}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * {@link CameraCharacteristics#TONEMAP_AVAILABLE_TONE_MAP_MODES android.tonemap.availableToneMapModes}</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CameraCharacteristics#TONEMAP_AVAILABLE_TONE_MAP_MODES * @see CaptureRequest#TONEMAP_CURVE * @see CaptureRequest#TONEMAP_MODE * @see #TONEMAP_MODE_CONTRAST_CURVE * @see #TONEMAP_MODE_FAST * @see #TONEMAP_MODE_HIGH_QUALITY * @see #TONEMAP_MODE_GAMMA_VALUE * @see #TONEMAP_MODE_PRESET_CURVE */ @PublicKey public static final Key<Integer> TONEMAP_MODE = new Key<Integer>("android.tonemap.mode", int.class); /** * <p>Tonemapping curve to use when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is * GAMMA_VALUE</p> * <p>The tonemap curve will be defined the following formula: * * OUT = pow(IN, 1.0 / gamma) * where IN and OUT is the input pixel value scaled to range [0.0, 1.0], * pow is the power function and gamma is the gamma value specified by this * key.</p> * <p>The same curve will be applied to all color channels. The camera device * may clip the input gamma value to its supported range. The actual applied * value will be returned in capture result.</p> * <p>The valid range of gamma value varies on different devices, but values * within [1.0, 5.0] are guaranteed not to be clipped.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CaptureRequest#TONEMAP_MODE */ @PublicKey public static final Key<Float> TONEMAP_GAMMA = new Key<Float>("android.tonemap.gamma", float.class); /** * <p>Tonemapping curve to use when {@link CaptureRequest#TONEMAP_MODE android.tonemap.mode} is * PRESET_CURVE</p> * <p>The tonemap curve will be defined by specified standard.</p> * <p>sRGB (approximated by 16 control points):</p> * <p><img alt="sRGB tonemapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/srgb_tonemap.png" /></p> * <p>Rec. 709 (approximated by 16 control points):</p> * <p><img alt="Rec. 709 tonemapping curve" src="../../../../images/camera2/metadata/android.tonemap.curveRed/rec709_tonemap.png" /></p> * <p>Note that above figures show a 16 control points approximation of preset * curves. Camera devices may apply a different approximation to the curve.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #TONEMAP_PRESET_CURVE_SRGB SRGB}</li> * <li>{@link #TONEMAP_PRESET_CURVE_REC709 REC709}</li> * </ul></p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * * @see CaptureRequest#TONEMAP_MODE * @see #TONEMAP_PRESET_CURVE_SRGB * @see #TONEMAP_PRESET_CURVE_REC709 */ @PublicKey public static final Key<Integer> TONEMAP_PRESET_CURVE = new Key<Integer>("android.tonemap.presetCurve", int.class); /** * <p>This LED is nominally used to indicate to the user * that the camera is powered on and may be streaming images back to the * Application Processor. In certain rare circumstances, the OS may * disable this when video is processed locally and not transmitted to * any untrusted applications.</p> * <p>In particular, the LED <em>must</em> always be on when the data could be * transmitted off the device. The LED <em>should</em> always be on whenever * data is stored locally on the device.</p> * <p>The LED <em>may</em> be off if a trusted application is using the data that * doesn't violate the above rules.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * @hide */ public static final Key<Boolean> LED_TRANSMIT = new Key<Boolean>("android.led.transmit", boolean.class); /** * <p>Whether black-level compensation is locked * to its current values, or is free to vary.</p> * <p>Whether the black level offset was locked for this frame. Should be * ON if {@link CaptureRequest#BLACK_LEVEL_LOCK android.blackLevel.lock} was ON in the capture request, unless * a change in other capture settings forced the camera device to * perform a black level reset.</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Full capability</b> - * Present on all camera devices that report being {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_FULL HARDWARE_LEVEL_FULL} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#BLACK_LEVEL_LOCK * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL */ @PublicKey public static final Key<Boolean> BLACK_LEVEL_LOCK = new Key<Boolean>("android.blackLevel.lock", boolean.class); /** * <p>The frame number corresponding to the last request * with which the output result (metadata + buffers) has been fully * synchronized.</p> * <p>When a request is submitted to the camera device, there is usually a * delay of several frames before the controls get applied. A camera * device may either choose to account for this delay by implementing a * pipeline and carefully submit well-timed atomic control updates, or * it may start streaming control changes that span over several frame * boundaries.</p> * <p>In the latter case, whenever a request's settings change relative to * the previous submitted request, the full set of changes may take * multiple frame durations to fully take effect. Some settings may * take effect sooner (in less frame durations) than others.</p> * <p>While a set of control changes are being propagated, this value * will be CONVERGING.</p> * <p>Once it is fully known that a set of control changes have been * finished propagating, and the resulting updated control settings * have been read back by the camera device, this value will be set * to a non-negative frame number (corresponding to the request to * which the results have synchronized to).</p> * <p>Older camera device implementations may not have a way to detect * when all camera controls have been applied, and will always set this * value to UNKNOWN.</p> * <p>FULL capability devices will always have this value set to the * frame number of the request corresponding to this result.</p> * <p><em>Further details</em>:</p> * <ul> * <li>Whenever a request differs from the last request, any future * results not yet returned may have this value set to CONVERGING (this * could include any in-progress captures not yet returned by the camera * device, for more details see pipeline considerations below).</li> * <li>Submitting a series of multiple requests that differ from the * previous request (e.g. r1, r2, r3 s.t. r1 != r2 != r3) * moves the new synchronization frame to the last non-repeating * request (using the smallest frame number from the contiguous list of * repeating requests).</li> * <li>Submitting the same request repeatedly will not change this value * to CONVERGING, if it was already a non-negative value.</li> * <li>When this value changes to non-negative, that means that all of the * metadata controls from the request have been applied, all of the * metadata controls from the camera device have been read to the * updated values (into the result), and all of the graphics buffers * corresponding to this result are also synchronized to the request.</li> * </ul> * <p><em>Pipeline considerations</em>:</p> * <p>Submitting a request with updated controls relative to the previously * submitted requests may also invalidate the synchronization state * of all the results corresponding to currently in-flight requests.</p> * <p>In other words, results for this current request and up to * {@link CameraCharacteristics#REQUEST_PIPELINE_MAX_DEPTH android.request.pipelineMaxDepth} prior requests may have their * android.sync.frameNumber change to CONVERGING.</p> * <p><b>Possible values:</b> * <ul> * <li>{@link #SYNC_FRAME_NUMBER_CONVERGING CONVERGING}</li> * <li>{@link #SYNC_FRAME_NUMBER_UNKNOWN UNKNOWN}</li> * </ul></p> * <p><b>Available values for this device:</b><br> * Either a non-negative value corresponding to a * <code>frame_number</code>, or one of the two enums (CONVERGING / UNKNOWN).</p> * <p>This key is available on all devices.</p> * * @see CameraCharacteristics#REQUEST_PIPELINE_MAX_DEPTH * @see #SYNC_FRAME_NUMBER_CONVERGING * @see #SYNC_FRAME_NUMBER_UNKNOWN * @hide */ public static final Key<Long> SYNC_FRAME_NUMBER = new Key<Long>("android.sync.frameNumber", long.class); /** * <p>The amount of exposure time increase factor applied to the original output * frame by the application processing before sending for reprocessing.</p> * <p>This is optional, and will be supported if the camera device supports YUV_REPROCESSING * capability ({@link CameraCharacteristics#REQUEST_AVAILABLE_CAPABILITIES android.request.availableCapabilities} contains YUV_REPROCESSING).</p> * <p>For some YUV reprocessing use cases, the application may choose to filter the original * output frames to effectively reduce the noise to the same level as a frame that was * captured with longer exposure time. To be more specific, assuming the original captured * images were captured with a sensitivity of S and an exposure time of T, the model in * the camera device is that the amount of noise in the image would be approximately what * would be expected if the original capture parameters had been a sensitivity of * S/effectiveExposureFactor and an exposure time of T*effectiveExposureFactor, rather * than S and T respectively. If the captured images were processed by the application * before being sent for reprocessing, then the application may have used image processing * algorithms and/or multi-frame image fusion to reduce the noise in the * application-processed images (input images). By using the effectiveExposureFactor * control, the application can communicate to the camera device the actual noise level * improvement in the application-processed image. With this information, the camera * device can select appropriate noise reduction and edge enhancement parameters to avoid * excessive noise reduction ({@link CaptureRequest#NOISE_REDUCTION_MODE android.noiseReduction.mode}) and insufficient edge * enhancement ({@link CaptureRequest#EDGE_MODE android.edge.mode}) being applied to the reprocessed frames.</p> * <p>For example, for multi-frame image fusion use case, the application may fuse * multiple output frames together to a final frame for reprocessing. When N image are * fused into 1 image for reprocessing, the exposure time increase factor could be up to * square root of N (based on a simple photon shot noise model). The camera device will * adjust the reprocessing noise reduction and edge enhancement parameters accordingly to * produce the best quality images.</p> * <p>This is relative factor, 1.0 indicates the application hasn't processed the input * buffer in a way that affects its effective exposure time.</p> * <p>This control is only effective for YUV reprocessing capture request. For noise * reduction reprocessing, it is only effective when <code>{@link CaptureRequest#NOISE_REDUCTION_MODE android.noiseReduction.mode} != OFF</code>. * Similarly, for edge enhancement reprocessing, it is only effective when * <code>{@link CaptureRequest#EDGE_MODE android.edge.mode} != OFF</code>.</p> * <p><b>Units</b>: Relative exposure time increase factor.</p> * <p><b>Range of valid values:</b><br> * >= 1.0</p> * <p><b>Optional</b> - This value may be {@code null} on some devices.</p> * <p><b>Limited capability</b> - * Present on all camera devices that report being at least {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED HARDWARE_LEVEL_LIMITED} devices in the * {@link CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL android.info.supportedHardwareLevel} key</p> * * @see CaptureRequest#EDGE_MODE * @see CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL * @see CaptureRequest#NOISE_REDUCTION_MODE * @see CameraCharacteristics#REQUEST_AVAILABLE_CAPABILITIES */ @PublicKey public static final Key<Float> REPROCESS_EFFECTIVE_EXPOSURE_FACTOR = new Key<Float>("android.reprocess.effectiveExposureFactor", float.class); /*~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~ * End generated code *~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~@~O@*/ }