/*
* Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt)
* Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt)
*
* This file is part of NeuGen.
*
* NeuGen is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* as published by the Free Software Foundation.
*
* see: http://opensource.org/licenses/LGPL-3.0
* file://path/to/NeuGen/LICENSE
*
* NeuGen is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* This version of NeuGen includes copyright notice and attribution requirements.
* According to the LGPL this information must be displayed even if you modify
* the source code of NeuGen. The copyright statement/attribution may not be removed.
*
* Attribution Requirements:
*
* If you create derived work you must do the following regarding copyright
* notice and author attribution.
*
* Add an additional notice, stating that you modified NeuGen. In addition
* you must cite the publications listed below. A suitable notice might read
* "NeuGen source code modified by YourName 2012".
*
* Note, that these requirements are in full accordance with the LGPL v3
* (see 7. Additional Terms, b).
*
* Publications:
*
* S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 -
* Employing NeuGen 2.0 to automatically generate realistic
* morphologies of hippocapal neurons and neural networks in 3D.
* Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1
*
*
* J. P. Eberhard, A. Wanner, G. Wittum. NeuGen -
* A tool for the generation of realistic morphology
* of cortical neurons and neural networks in 3D.
* Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028
*
*/
/**
*
*/
package org.neugen.slider;
import java.util.List;
import javax.vecmath.Point3f;
import org.neugen.datastructures.Segment;
/**
* @author alwa
*
*/
public final class Seeker {
public static boolean isInside(Point3f p, List<Segment> segments) {
for (Segment segment : segments) {
if (isInside(p, segment)) {
return true;
}
}
return false;
}
public static boolean isInside(Point3f p, Segment segment) {
Point3f startPoint = segment.getStart();
Point3f endPoint = segment.getEnd();
Point3f direction = new Point3f();
direction.sub(endPoint, startPoint);
float segLen = endPoint.distance(startPoint);
direction.scale(1.f / segLen);
/*
* if (((x - c_start) * c_direction).sum() < 0.0) return val_env;
if (((x - c_end) * c_direction).sum() > 0.0) return val_env;
float t = ((x - c_start) * c_direction).sum(); // length of projection of x on c_direction
float radius = c_radius_start + t * (c_radius_end - c_radius_start) / c_length; // linear function for radius along segment
if (d == 2) {
valarray<float> c_normal(2);
c_normal[0] = c_direction[1];
c_normal[1] = -c_direction[0];
if (fabs((c_normal * (x - c_start)).sum()) <= radius) return val_segment;
}
if (d == 3) {
valarray<float> v(3), diff(x - c_start);
v[0] = c_direction[1] * diff[2] - c_direction[2] * diff[1];
v[1] = c_direction[2] * diff[0] - c_direction[0] * diff[2];
v[2] = c_direction[0] * diff[1] - c_direction[1] * diff[0];
if (length(v) <= radius) return val_segment;
}
return val_env;
*/
float projLen = 0.f;
{
Point3f dif = new Point3f();
dif.sub(p, startPoint);
projLen = mul(dif, direction);
if (projLen < 0.f) {
return false;
}
}
{
Point3f dif = new Point3f();
dif.sub(p, endPoint);
if (mul(dif, direction) > 0.f) {
return false;
}
}
{
Point3f projection = new Point3f();
projection.scale(projLen, direction);
projection.add(startPoint);
float rad = segment.getStartRadius() + projLen / segLen * (segment.getEndRadius() - segment.getStartRadius());
float distance = projection.distance(p);
if (rad < distance) {
return false;
} else {
return true;
}
}
}
public static float mul(Point3f p1, Point3f p2) {
return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z;
}
}