/* * Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt) * Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt) * * This file is part of NeuGen. * * NeuGen is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * as published by the Free Software Foundation. * * see: http://opensource.org/licenses/LGPL-3.0 * file://path/to/NeuGen/LICENSE * * NeuGen is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * This version of NeuGen includes copyright notice and attribution requirements. * According to the LGPL this information must be displayed even if you modify * the source code of NeuGen. The copyright statement/attribution may not be removed. * * Attribution Requirements: * * If you create derived work you must do the following regarding copyright * notice and author attribution. * * Add an additional notice, stating that you modified NeuGen. In addition * you must cite the publications listed below. A suitable notice might read * "NeuGen source code modified by YourName 2012". * * Note, that these requirements are in full accordance with the LGPL v3 * (see 7. Additional Terms, b). * * Publications: * * S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 - * Employing NeuGen 2.0 to automatically generate realistic * morphologies of hippocapal neurons and neural networks in 3D. * Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1 * * * J. P. Eberhard, A. Wanner, G. Wittum. NeuGen - * A tool for the generation of realistic morphology * of cortical neurons and neural networks in 3D. * Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028 * */ /** * */ package org.neugen.slider; import java.util.List; import javax.vecmath.Point3f; import org.neugen.datastructures.Segment; /** * @author alwa * */ public final class Seeker { public static boolean isInside(Point3f p, List<Segment> segments) { for (Segment segment : segments) { if (isInside(p, segment)) { return true; } } return false; } public static boolean isInside(Point3f p, Segment segment) { Point3f startPoint = segment.getStart(); Point3f endPoint = segment.getEnd(); Point3f direction = new Point3f(); direction.sub(endPoint, startPoint); float segLen = endPoint.distance(startPoint); direction.scale(1.f / segLen); /* * if (((x - c_start) * c_direction).sum() < 0.0) return val_env; if (((x - c_end) * c_direction).sum() > 0.0) return val_env; float t = ((x - c_start) * c_direction).sum(); // length of projection of x on c_direction float radius = c_radius_start + t * (c_radius_end - c_radius_start) / c_length; // linear function for radius along segment if (d == 2) { valarray<float> c_normal(2); c_normal[0] = c_direction[1]; c_normal[1] = -c_direction[0]; if (fabs((c_normal * (x - c_start)).sum()) <= radius) return val_segment; } if (d == 3) { valarray<float> v(3), diff(x - c_start); v[0] = c_direction[1] * diff[2] - c_direction[2] * diff[1]; v[1] = c_direction[2] * diff[0] - c_direction[0] * diff[2]; v[2] = c_direction[0] * diff[1] - c_direction[1] * diff[0]; if (length(v) <= radius) return val_segment; } return val_env; */ float projLen = 0.f; { Point3f dif = new Point3f(); dif.sub(p, startPoint); projLen = mul(dif, direction); if (projLen < 0.f) { return false; } } { Point3f dif = new Point3f(); dif.sub(p, endPoint); if (mul(dif, direction) > 0.f) { return false; } } { Point3f projection = new Point3f(); projection.scale(projLen, direction); projection.add(startPoint); float rad = segment.getStartRadius() + projLen / segLen * (segment.getEndRadius() - segment.getStartRadius()); float distance = projection.distance(p); if (rad < distance) { return false; } else { return true; } } } public static float mul(Point3f p1, Point3f p2) { return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; } }