/*
* Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt)
* Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt)
*
* This file is part of NeuGen.
*
* NeuGen is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* as published by the Free Software Foundation.
*
* see: http://opensource.org/licenses/LGPL-3.0
* file://path/to/NeuGen/LICENSE
*
* NeuGen is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* This version of NeuGen includes copyright notice and attribution requirements.
* According to the LGPL this information must be displayed even if you modify
* the source code of NeuGen. The copyright statement/attribution may not be removed.
*
* Attribution Requirements:
*
* If you create derived work you must do the following regarding copyright
* notice and author attribution.
*
* Add an additional notice, stating that you modified NeuGen. In addition
* you must cite the publications listed below. A suitable notice might read
* "NeuGen source code modified by YourName 2012".
*
* Note, that these requirements are in full accordance with the LGPL v3
* (see 7. Additional Terms, b).
*
* Publications:
*
* S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 -
* Employing NeuGen 2.0 to automatically generate realistic
* morphologies of hippocapal neurons and neural networks in 3D.
* Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1
*
*
* J. P. Eberhard, A. Wanner, G. Wittum. NeuGen -
* A tool for the generation of realistic morphology
* of cortical neurons and neural networks in 3D.
* Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028
*
*/
package org.neugen.slider;
import javax.vecmath.Point3f;
import org.neugen.datastructures.Segment;
/**
* Cartesian data grid generator.
*
* @author alwa
*
*/
public final class CartGridGenerator<Float> {
protected DataGrid<Float> grid = new DataGrid<Float>(
new DataGrid.CoordinateType[]{
DataGrid.CoordinateType.Z,
DataGrid.CoordinateType.X,
DataGrid.CoordinateType.Y
});
private float spacings[];
protected float gridsOrigins[];
public CartGridGenerator(Point3f gridOrigins, Point3f spacings) {
gridsOrigins = new float[]{
gridOrigins.x,
gridOrigins.y,
gridOrigins.z
};
this.spacings = new float[]{
spacings.x,
spacings.y,
spacings.z
};
}
public void resolve(Segment segment, Float data) {
float minVertex[] = new float[3];
float maxVertex[] = new float[3];
float points[][] = new float[2][3];
float radii[] = {segment.getStartRadius(), segment.getEndRadius()};
Point3f tmp = segment.getStart();
float[] sstart = new float[3];
sstart[0] = tmp.x;
sstart[1] = tmp.y;
sstart[2] = tmp.z;
tmp = segment.getEnd();
float[] send = new float[3];
send[0] = tmp.x;
send[1] = tmp.y;
send[2] = tmp.z;
points[0] = sstart;
points[1] = send;
//segment.startPoint.get(points[0]);
//segment.endPoint.get(points[1]);
// Init edges of the local data grid
for (int cIndex = 0; cIndex < 3; ++cIndex) {
maxVertex[cIndex] = Math.max(points[0][cIndex] + radii[0], points[1][cIndex] + radii[1]);
}
for (int cIndex = 0; cIndex < 3; ++cIndex) {
minVertex[cIndex] = Math.min(points[0][cIndex] - radii[0], points[1][cIndex] - radii[1]);
}
// correct on spacing
for (int cIndex = 0; cIndex < 3; ++cIndex) {
minVertex[cIndex] = (float) Math.ceil((minVertex[cIndex] - gridsOrigins[cIndex]) / spacings[cIndex]) * spacings[cIndex];
maxVertex[cIndex] = (float) Math.ceil((maxVertex[cIndex] - gridsOrigins[cIndex]) / spacings[cIndex]) * spacings[cIndex];
}
resolve(segment, minVertex, maxVertex, data);
}
public void resolve(Segment segment, float minVertex[], float maxVertex[], Float data) {
int coord[] = new int[3];
float coordF[] = new float[3];
for (float x = minVertex[0]; !(x > maxVertex[0]); x += spacings[0]) {
for (float y = minVertex[1]; !(y > maxVertex[1]); y += spacings[1]) {
for (float z = minVertex[2]; !(z > maxVertex[2]); z += spacings[2]) {
Point3f p = new Point3f(x, y, z);
if (Seeker.isInside(p, segment)) {
p.get(coordF);
for (int cIndex = 0; cIndex < 3; ++cIndex) {
coord[cIndex] = Math.round((coordF[cIndex] - gridsOrigins[cIndex]) / spacings[cIndex]);
}
grid.set(coord, data);
}
}
}
}
}
public DataGrid<Float> getGrid() {
return grid;
}
}