/*
* Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt)
* Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt)
*
* This file is part of NeuGen.
*
* NeuGen is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* as published by the Free Software Foundation.
*
* see: http://opensource.org/licenses/LGPL-3.0
* file://path/to/NeuGen/LICENSE
*
* NeuGen is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* This version of NeuGen includes copyright notice and attribution requirements.
* According to the LGPL this information must be displayed even if you modify
* the source code of NeuGen. The copyright statement/attribution may not be removed.
*
* Attribution Requirements:
*
* If you create derived work you must do the following regarding copyright
* notice and author attribution.
*
* Add an additional notice, stating that you modified NeuGen. In addition
* you must cite the publications listed below. A suitable notice might read
* "NeuGen source code modified by YourName 2012".
*
* Note, that these requirements are in full accordance with the LGPL v3
* (see 7. Additional Terms, b).
*
* Publications:
*
* S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 -
* Employing NeuGen 2.0 to automatically generate realistic
* morphologies of hippocapal neurons and neural networks in 3D.
* Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1
*
*
* J. P. Eberhard, A. Wanner, G. Wittum. NeuGen -
* A tool for the generation of realistic morphology
* of cortical neurons and neural networks in 3D.
* Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028
*
*/
/*
* Class for synaptic connections between two neurons of a net.
*/
package org.neugen.datastructures;
import org.neugen.datastructures.neuron.Neuron;
import java.io.Serializable;
/**
* @author Jens Eberhard
* @author Sergei Wolf
*/
public final class Cons implements Serializable {
private static final long serialVersionUID = -3611946473283033478L;
/** The source of the synapse. */
/** The first neuron. */
private final Neuron neuron1;
/** The axonal section reference. */
private final Section neuron1AxSection;
/** The presynaptic segment in a section of fist neuron. */
private final Segment neuron1AxSegment;
/** The target of the synapse. */
/** The second neuron. */
private final Neuron neuron2;
/** The dendrite section of second neuron. */
private final Section neuron2DenSection;
/** The segment within the section of second neuron. */
private final Segment neuron2DenSectionSegment;
/** Polygonal distance to postsynaptic soma. */
private float dendriticSomaDistance;
/** Polygonal distance to presynaptic soma. */
private float axonalSomaDistance;
public static class Builder {
private Neuron neuron1;
private Section neuron1AxSection;
private final Segment neuron1AxSegment;
/** The target of the synapse. */
private Neuron neuron2;
private Section neuron2DenSection;
private final Segment neuron2DenSectionSegment;
/** Polygonal distance to postsynaptic soma. */
private float dendriticSomaDistance = -1;
/** Polygonal distance to presynaptic soma. */
private float axonalSomaDistance = -1;
public Builder(Segment neuron1AxSegment, Segment neuron2DenSectionSegment) {
this.neuron1AxSegment = neuron1AxSegment;
this.neuron2DenSectionSegment = neuron2DenSectionSegment;
}
public Builder neuron1(Neuron neuron1) {
this.neuron1 = neuron1;
return this;
}
public Builder neuron2(Neuron neuron2) {
this.neuron2 = neuron2;
return this;
}
public Builder neuron1AxSection(Section neuron1AxSection) {
this.neuron1AxSection = neuron1AxSection;
return this;
}
public Builder neuron2DenSection(Section neuron2DenSection) {
this.neuron2DenSection = neuron2DenSection;
return this;
}
public Cons build() {
return new Cons(this);
}
}
private Cons(Builder builder) {
this.neuron1 = builder.neuron1;
this.neuron2 = builder.neuron2;
this.neuron1AxSection = builder.neuron1AxSection;
this.neuron2DenSection = builder.neuron2DenSection;
this.neuron1AxSegment = builder.neuron1AxSegment;
this.neuron2DenSectionSegment = builder.neuron2DenSectionSegment;
this.axonalSomaDistance = builder.axonalSomaDistance;
this.dendriticSomaDistance = builder.dendriticSomaDistance;
}
public Neuron getNeuron1() {
return neuron1;
}
public Section getNeuron1AxSection() {
return neuron1AxSection;
}
public Segment getNeuron1AxSegment() {
return neuron1AxSegment;
}
public Neuron getNeuron2() {
return neuron2;
}
public Section getNeuron2DenSection() {
return neuron2DenSection;
}
public Segment getNeuron2DenSectionSegment() {
return neuron2DenSectionSegment;
}
public float getAxonalSomaDistance() {
return axonalSomaDistance;
}
public void setAxonalSomaDistance(float axonalSomaDistance) {
this.axonalSomaDistance = axonalSomaDistance;
}
public float getDendriticSomaDistance() {
return dendriticSomaDistance;
}
public void setDendriticSomaDistance(float dendriticSomaDistance) {
this.dendriticSomaDistance = dendriticSomaDistance;
}
}