/* * Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt) * Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt) * * This file is part of NeuGen. * * NeuGen is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * as published by the Free Software Foundation. * * see: http://opensource.org/licenses/LGPL-3.0 * file://path/to/NeuGen/LICENSE * * NeuGen is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * This version of NeuGen includes copyright notice and attribution requirements. * According to the LGPL this information must be displayed even if you modify * the source code of NeuGen. The copyright statement/attribution may not be removed. * * Attribution Requirements: * * If you create derived work you must do the following regarding copyright * notice and author attribution. * * Add an additional notice, stating that you modified NeuGen. In addition * you must cite the publications listed below. A suitable notice might read * "NeuGen source code modified by YourName 2012". * * Note, that these requirements are in full accordance with the LGPL v3 * (see 7. Additional Terms, b). * * Publications: * * S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 - * Employing NeuGen 2.0 to automatically generate realistic * morphologies of hippocapal neurons and neural networks in 3D. * Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1 * * * J. P. Eberhard, A. Wanner, G. Wittum. NeuGen - * A tool for the generation of realistic morphology * of cortical neurons and neural networks in 3D. * Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028 * */ /* * Class for synaptic connections between two neurons of a net. */ package org.neugen.datastructures; import org.neugen.datastructures.neuron.Neuron; import java.io.Serializable; /** * @author Jens Eberhard * @author Sergei Wolf */ public final class Cons implements Serializable { private static final long serialVersionUID = -3611946473283033478L; /** The source of the synapse. */ /** The first neuron. */ private final Neuron neuron1; /** The axonal section reference. */ private final Section neuron1AxSection; /** The presynaptic segment in a section of fist neuron. */ private final Segment neuron1AxSegment; /** The target of the synapse. */ /** The second neuron. */ private final Neuron neuron2; /** The dendrite section of second neuron. */ private final Section neuron2DenSection; /** The segment within the section of second neuron. */ private final Segment neuron2DenSectionSegment; /** Polygonal distance to postsynaptic soma. */ private float dendriticSomaDistance; /** Polygonal distance to presynaptic soma. */ private float axonalSomaDistance; public static class Builder { private Neuron neuron1; private Section neuron1AxSection; private final Segment neuron1AxSegment; /** The target of the synapse. */ private Neuron neuron2; private Section neuron2DenSection; private final Segment neuron2DenSectionSegment; /** Polygonal distance to postsynaptic soma. */ private float dendriticSomaDistance = -1; /** Polygonal distance to presynaptic soma. */ private float axonalSomaDistance = -1; public Builder(Segment neuron1AxSegment, Segment neuron2DenSectionSegment) { this.neuron1AxSegment = neuron1AxSegment; this.neuron2DenSectionSegment = neuron2DenSectionSegment; } public Builder neuron1(Neuron neuron1) { this.neuron1 = neuron1; return this; } public Builder neuron2(Neuron neuron2) { this.neuron2 = neuron2; return this; } public Builder neuron1AxSection(Section neuron1AxSection) { this.neuron1AxSection = neuron1AxSection; return this; } public Builder neuron2DenSection(Section neuron2DenSection) { this.neuron2DenSection = neuron2DenSection; return this; } public Cons build() { return new Cons(this); } } private Cons(Builder builder) { this.neuron1 = builder.neuron1; this.neuron2 = builder.neuron2; this.neuron1AxSection = builder.neuron1AxSection; this.neuron2DenSection = builder.neuron2DenSection; this.neuron1AxSegment = builder.neuron1AxSegment; this.neuron2DenSectionSegment = builder.neuron2DenSectionSegment; this.axonalSomaDistance = builder.axonalSomaDistance; this.dendriticSomaDistance = builder.dendriticSomaDistance; } public Neuron getNeuron1() { return neuron1; } public Section getNeuron1AxSection() { return neuron1AxSection; } public Segment getNeuron1AxSegment() { return neuron1AxSegment; } public Neuron getNeuron2() { return neuron2; } public Section getNeuron2DenSection() { return neuron2DenSection; } public Segment getNeuron2DenSectionSegment() { return neuron2DenSectionSegment; } public float getAxonalSomaDistance() { return axonalSomaDistance; } public void setAxonalSomaDistance(float axonalSomaDistance) { this.axonalSomaDistance = axonalSomaDistance; } public float getDendriticSomaDistance() { return dendriticSomaDistance; } public void setDendriticSomaDistance(float dendriticSomaDistance) { this.dendriticSomaDistance = dendriticSomaDistance; } }