/* * Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt) * Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt) * * This file is part of NeuGen. * * NeuGen is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * as published by the Free Software Foundation. * * see: http://opensource.org/licenses/LGPL-3.0 * file://path/to/NeuGen/LICENSE * * NeuGen is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * This version of NeuGen includes copyright notice and attribution requirements. * According to the LGPL this information must be displayed even if you modify * the source code of NeuGen. The copyright statement/attribution may not be removed. * * Attribution Requirements: * * If you create derived work you must do the following regarding copyright * notice and author attribution. * * Add an additional notice, stating that you modified NeuGen. In addition * you must cite the publications listed below. A suitable notice might read * "NeuGen source code modified by YourName 2012". * * Note, that these requirements are in full accordance with the LGPL v3 * (see 7. Additional Terms, b). * * Publications: * * S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 - * Employing NeuGen 2.0 to automatically generate realistic * morphologies of hippocapal neurons and neural networks in 3D. * Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1 * * * J. P. Eberhard, A. Wanner, G. Wittum. NeuGen - * A tool for the generation of realistic morphology * of cortical neurons and neural networks in 3D. * Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028 * */ /* * File: CommonTreeParam.java * Created on 20.08.2009, 15:29:34 * */ package org.neugen.datastructures.parameter; import org.neugen.parsers.ConfigParserContainer; import org.neugen.datastructures.parameter.SubCommonTreeParam.GNSubCommonTreeParam; class TreeStaticParam extends KeyIdentificable { protected final Parameter<Float> val; protected final Parameter<Float> vel; protected final Parameter<Integer> seed; /** * Initializes val, vel and seed with values from the InternaParser. * @param container is the object "containing" (s. KeyIdentificable) this object. */ public TreeStaticParam(KeyIdentificable container, String key) { super(container, key); val = new Parameter<Float>(ConfigParserContainer.getInternaParser(), this, "val"); vel = new Parameter<Float>(ConfigParserContainer.getInternaParser(), this, "vel"); seed = new Parameter<Integer>(ConfigParserContainer.getInternaParser(), this, "seed"); } public int getSeedValue() { return seed.getValue().intValue(); } public float getValValue() { return val.getValue().floatValue(); } public float getVelValue() { return vel.getValue().floatValue(); } } /** * Common tree parameter. * @author Alexander Wanner */ public class CommonTreeParam extends TreeStaticParam { /** min, max radius of the dendrite or axon. */ protected final MinMaxParameter<Float> rad; /** Parameter for substring of the first "generation" */ protected final GNSubCommonTreeParam gen_0; protected final Parameter<Float> a; protected final Parameter<Float> c; /** * Constructs contained parameters with given container. * @param container is the object containing this object. */ public CommonTreeParam(KeyIdentificable container, String key) { super(container, key); rad = new MinMaxParameter<Float>(ConfigParserContainer.getParamParser(), this, "rad"); a = new Parameter<Float>(ConfigParserContainer.getInternaParser(), this, "a"); c = new Parameter<Float>(ConfigParserContainer.getInternaParser(), this, "c"); gen_0 = new GNSubCommonTreeParam(this); } /** * Get the value of Rall's power. * * @return the value of Rall's power. */ public float getA() { return a.getValue().floatValue(); } /** * Get the threshold of the radius of Rall's power rule. * * @return the threshold of the radius of Rall's power rule. */ public float getC() { return c.getValue().floatValue(); } /** * Get the first generation of the neuronal structure tree. * * @return the first generation of the neuronal structure tree. */ public GNSubCommonTreeParam getFirstGen() { return gen_0; } public MinMaxParameter<Float> getRad() { return rad; } /** * @return true exactly if all container parameter are valid. */ public boolean isValid() { return val.isValid() && vel.isValid() && seed.isValid() && rad.isValid() && gen_0.isValid(); } /** * Returns string representation of the neuronal tree. * * @return ret The string representation of siblings. */ @Override public String toString() { String ret = "val = " + val.toString() + " vel = " + vel.toString() + " seed = " + seed.toString() + " rad = " + rad.toString() + "\n generations of dendrite strings:" + "\n\t0: " + gen_0.toString() + "\n\t1: " + gen_0.getSiblings().toString() + "\n\t2: " + gen_0.getSiblings().getSiblings().toString() + "\n\t3: " + gen_0.getSiblings().getSiblings().getSiblings().toString() + "\n\t4: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().toString() + "\n\t5: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString() + "\n\t6: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString() + "\n\t7: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString() + "\n\t8: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString() + "\n\t9: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString() + "\n "; return ret; } }