/*
* Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt)
* Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt)
*
* This file is part of NeuGen.
*
* NeuGen is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* as published by the Free Software Foundation.
*
* see: http://opensource.org/licenses/LGPL-3.0
* file://path/to/NeuGen/LICENSE
*
* NeuGen is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* This version of NeuGen includes copyright notice and attribution requirements.
* According to the LGPL this information must be displayed even if you modify
* the source code of NeuGen. The copyright statement/attribution may not be removed.
*
* Attribution Requirements:
*
* If you create derived work you must do the following regarding copyright
* notice and author attribution.
*
* Add an additional notice, stating that you modified NeuGen. In addition
* you must cite the publications listed below. A suitable notice might read
* "NeuGen source code modified by YourName 2012".
*
* Note, that these requirements are in full accordance with the LGPL v3
* (see 7. Additional Terms, b).
*
* Publications:
*
* S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 -
* Employing NeuGen 2.0 to automatically generate realistic
* morphologies of hippocapal neurons and neural networks in 3D.
* Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1
*
*
* J. P. Eberhard, A. Wanner, G. Wittum. NeuGen -
* A tool for the generation of realistic morphology
* of cortical neurons and neural networks in 3D.
* Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028
*
*/
/*
* File: CommonTreeParam.java
* Created on 20.08.2009, 15:29:34
*
*/
package org.neugen.datastructures.parameter;
import org.neugen.parsers.ConfigParserContainer;
import org.neugen.datastructures.parameter.SubCommonTreeParam.GNSubCommonTreeParam;
class TreeStaticParam extends KeyIdentificable {
protected final Parameter<Float> val;
protected final Parameter<Float> vel;
protected final Parameter<Integer> seed;
/**
* Initializes val, vel and seed with values from the InternaParser.
* @param container is the object "containing" (s. KeyIdentificable) this object.
*/
public TreeStaticParam(KeyIdentificable container, String key) {
super(container, key);
val = new Parameter<Float>(ConfigParserContainer.getInternaParser(), this, "val");
vel = new Parameter<Float>(ConfigParserContainer.getInternaParser(), this, "vel");
seed = new Parameter<Integer>(ConfigParserContainer.getInternaParser(), this, "seed");
}
public int getSeedValue() {
return seed.getValue().intValue();
}
public float getValValue() {
return val.getValue().floatValue();
}
public float getVelValue() {
return vel.getValue().floatValue();
}
}
/**
* Common tree parameter.
* @author Alexander Wanner
*/
public class CommonTreeParam extends TreeStaticParam {
/** min, max radius of the dendrite or axon. */
protected final MinMaxParameter<Float> rad;
/** Parameter for substring of the first "generation" */
protected final GNSubCommonTreeParam gen_0;
protected final Parameter<Float> a;
protected final Parameter<Float> c;
/**
* Constructs contained parameters with given container.
* @param container is the object containing this object.
*/
public CommonTreeParam(KeyIdentificable container, String key) {
super(container, key);
rad = new MinMaxParameter<Float>(ConfigParserContainer.getParamParser(), this, "rad");
a = new Parameter<Float>(ConfigParserContainer.getInternaParser(), this, "a");
c = new Parameter<Float>(ConfigParserContainer.getInternaParser(), this, "c");
gen_0 = new GNSubCommonTreeParam(this);
}
/**
* Get the value of Rall's power.
*
* @return the value of Rall's power.
*/
public float getA() {
return a.getValue().floatValue();
}
/**
* Get the threshold of the radius of Rall's power rule.
*
* @return the threshold of the radius of Rall's power rule.
*/
public float getC() {
return c.getValue().floatValue();
}
/**
* Get the first generation of the neuronal structure tree.
*
* @return the first generation of the neuronal structure tree.
*/
public GNSubCommonTreeParam getFirstGen() {
return gen_0;
}
public MinMaxParameter<Float> getRad() {
return rad;
}
/**
* @return true exactly if all container parameter are valid.
*/
public boolean isValid() {
return val.isValid()
&& vel.isValid()
&& seed.isValid()
&& rad.isValid()
&& gen_0.isValid();
}
/**
* Returns string representation of the neuronal tree.
*
* @return ret The string representation of siblings.
*/
@Override
public String toString() {
String ret = "val = " + val.toString()
+ " vel = " + vel.toString()
+ " seed = " + seed.toString()
+ " rad = " + rad.toString()
+ "\n generations of dendrite strings:"
+ "\n\t0: " + gen_0.toString()
+ "\n\t1: " + gen_0.getSiblings().toString()
+ "\n\t2: " + gen_0.getSiblings().getSiblings().toString()
+ "\n\t3: " + gen_0.getSiblings().getSiblings().getSiblings().toString()
+ "\n\t4: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().toString()
+ "\n\t5: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString()
+ "\n\t6: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString()
+ "\n\t7: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString()
+ "\n\t8: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString()
+ "\n\t9: " + gen_0.getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().getSiblings().toString()
+ "\n ";
return ret;
}
}