/* * Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt) * Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt) * * This file is part of NeuGen. * * NeuGen is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * as published by the Free Software Foundation. * * see: http://opensource.org/licenses/LGPL-3.0 * file://path/to/NeuGen/LICENSE * * NeuGen is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * This version of NeuGen includes copyright notice and attribution requirements. * According to the LGPL this information must be displayed even if you modify * the source code of NeuGen. The copyright statement/attribution may not be removed. * * Attribution Requirements: * * If you create derived work you must do the following regarding copyright * notice and author attribution. * * Add an additional notice, stating that you modified NeuGen. In addition * you must cite the publications listed below. A suitable notice might read * "NeuGen source code modified by YourName 2012". * * Note, that these requirements are in full accordance with the LGPL v3 * (see 7. Additional Terms, b). * * Publications: * * S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 - * Employing NeuGen 2.0 to automatically generate realistic * morphologies of hippocapal neurons and neural networks in 3D. * Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1 * * * J. P. Eberhard, A. Wanner, G. Wittum. NeuGen - * A tool for the generation of realistic morphology * of cortical neurons and neural networks in 3D. * Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028 * */ /* * File: StarpyramidalNeuron.java * Created on 13.10.2009, 09:47:29 * */ package org.neugen.datastructures.neuron; import java.io.Serializable; import javax.vecmath.Point3f; import javax.vecmath.Vector3f; import org.neugen.datastructures.DataStructureConstants; import org.neugen.datastructures.Dendrite; import org.neugen.datastructures.parameter.DendriteParam; import org.neugen.datastructures.parameter.NeuronParam; import org.neugen.datastructures.parameter.ParameterConstants; import org.neugen.gui.Trigger; import org.neugen.utils.Vrand; /** * @author Jens Eberhard * @author Simone Eberhard * @author Alexander Wanner */ public final class NeuronStarpyramidal extends NeuronBase implements Serializable, Neuron { public static final class Param extends NeuronParam { /** basal dendrite parameter */ private final DendriteParam.BasalParam basal; private static Param instance; /** Constructs contained parameters. */ private Param(String lastKey) { super(NeuronParam.getInstance(), lastKey); basal = dendriteParam; } public static void setInstance(Param instance) { Param.instance = instance; } /** * Returns instance. * * @return Instance of StarpyramidalParam. */ public static Param getInstance() { if (instance == null) { Param param = new NeuronStarpyramidal.Param(ParameterConstants.SUFFIX_PATH_STARPYRAMIDAL); param.setApicalParam(ParameterConstants.SUFFIX_PATH_APICAL); param.setBasalParam(ParameterConstants.SUFFIX_PATH_BASAL); Param.setInstance(param); param.getApicalParam().setTopFluctuation(null); } return instance; } /** Returns true exactly if all container parameter are valid. */ @Override public boolean isValid() { return super.isValid() && apicalParam.isValid(); } /** * Get the string representation of the dendrite. * * @return the string representation of the starpyramidal parameter. */ @Override public String toString() { String ret = "\n" + this.key + " parameter: validation = " + isValid() + "\nseed = " + seed.getValue() + "\n nden = " + numDen.getValue() + "\nnapiden = " + napiden.getValue() + "\n deviation(each coord. in times of soma radius) = " + deviation.toString() + "\n" + somaParam.toString() + axonParam.toString() + basal.toString() + apicalParam.toString() + synapseParam.toString() + this.key + " end\n\n"; return ret; } } private static final long serialVersionUID = -6469337816398031243L; private static Vrand basalRandomNumber; private static Vrand apicalRandomNumber; /** Constructor. */ public NeuronStarpyramidal() { super(); type = DataStructureConstants.STAR_PYRAMIDAL; if (basalRandomNumber == null) { basalRandomNumber = new Vrand(getParam().getDendriteParam().getSeedValue()); } if (apicalRandomNumber == null) { apicalRandomNumber = new Vrand(getParam().getApicalParam().getSeedValue()); } if (drawNumber == null) { drawNumber = new Vrand(getParam().getSeedValue()); } } @Override public NeuronParam getParam() { return Param.getInstance(); } /** * Function for setting a L4stellate neuron. * It sets the axon and creates the dendrites. */ @Override public void setNeuron() { String mes = "set for " + getType() + " neuron"; //logger.info(mes); Trigger trigger = Trigger.getInstance(); trigger.outPrintln(); trigger.outPrintln(mes); Point3f somaMid = new Point3f(soma.getMid()); Point3f axonEnd = new Point3f(somaMid); Point3f axonStart = new Point3f(somaMid); float somaRadius = soma.getMeanRadius(); Vector3f deviation = new Vector3f(getParam().getDeviation().getX(), getParam().getDeviation().getY(), getParam().getDeviation().getZ()); deviation.scale(somaRadius); int up_down = drawNumber.pm_onedraw(); axonEnd.x += getParam().getAxonParam().getFirstGen().getLenParam().getX() * drawNumber.fpm_onedraw(); axonEnd.y += getParam().getAxonParam().getFirstGen().getLenParam().getY() * drawNumber.fpm_onedraw(); axonEnd.z = somaMid.z + up_down * getParam().getAxonParam().getFirstGen().getLenParam().getZ() * (drawNumber.fdraw() + 0.5f); axonStart.z += up_down * somaRadius; soma.cylindricRepresentant(); axon.set(axonStart, axonEnd, getParam().getAxonParam()); somaMid.z += somaRadius; //logger.info("set dendirte"); int npyramidaldendrite = getParam().getNumberOfApicalDendrites(); for (int i = 0; i < getParam().getNumberOfDendrites(); ++i) { if (i < npyramidaldendrite) { Dendrite dendrite = new Dendrite(); dendrite.setDrawNumber(apicalRandomNumber); dendrite.setPyramidalDendrite(getParam().getApicalParam(), soma, deviation, getParam().getApicalParam().getNumOblique()); dendrites.add(dendrite); } else { Dendrite dendrite = new Dendrite(); dendrite.setDrawNumber(basalRandomNumber); dendrite.setDendrite(getParam().getDendriteParam(), soma, deviation, false); dendrites.add(dendrite); } } } }