/* * Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt) * Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt) * * This file is part of NeuGen. * * NeuGen is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * as published by the Free Software Foundation. * * see: http://opensource.org/licenses/LGPL-3.0 * file://path/to/NeuGen/LICENSE * * NeuGen is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * This version of NeuGen includes copyright notice and attribution requirements. * According to the LGPL this information must be displayed even if you modify * the source code of NeuGen. The copyright statement/attribution may not be removed. * * Attribution Requirements: * * If you create derived work you must do the following regarding copyright * notice and author attribution. * * Add an additional notice, stating that you modified NeuGen. In addition * you must cite the publications listed below. A suitable notice might read * "NeuGen source code modified by YourName 2012". * * Note, that these requirements are in full accordance with the LGPL v3 * (see 7. Additional Terms, b). * * Publications: * * S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 - * Employing NeuGen 2.0 to automatically generate realistic * morphologies of hippocapal neurons and neural networks in 3D. * Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1 * * * J. P. Eberhard, A. Wanner, G. Wittum. NeuGen - * A tool for the generation of realistic morphology * of cortical neurons and neural networks in 3D. * Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028 * */ /* * File: L4stellateNeuron.java * Created on 12.10.2009, 13:47:43 * * * @date 10.05.2004 * */ package org.neugen.datastructures.neuron; import java.io.Serializable; import javax.vecmath.Point3f; import javax.vecmath.Vector3f; import org.neugen.datastructures.DataStructureConstants; import org.neugen.datastructures.Dendrite; import org.neugen.datastructures.parameter.AxonParam; import org.neugen.datastructures.parameter.NeuronParam; import org.neugen.datastructures.parameter.ParameterConstants; import org.neugen.gui.Trigger; import org.neugen.utils.Vrand; /** * Subclass for a L4stellate neuron. * @author Jens Eberhard * @author Alexander Wanner */ public final class NeuronL4stellate extends NeuronBase implements Serializable, Neuron { public static final class Param extends NeuronParam { private static Param instance; /** Constructs contained parameters. */ private Param(String lastKey) { super(NeuronParam.getInstance(), lastKey); if (instance != null) { throw new IllegalStateException("Already instantiated"); } } /** * Get the value of instance * * @return the value of instance */ public static Param getInstance() { if (instance == null) { Param param = new NeuronL4stellate.Param(ParameterConstants.SUFFIX_PATH_L4STELLATE); param.setBasalParam(ParameterConstants.LAST_KEY_DENDRITE); Param.setInstance(param); } return instance; } /** * Set the value of instance * * @param instance new value of instance */ public static void setInstance(Param instance) { Param.instance = instance; } /** Returns string representation of the dendrite. */ @Override public String toString() { return super.toString(); } } private static final long serialVersionUID = -7031931269184524614L; /** Constructor. */ public NeuronL4stellate() { super(); type = DataStructureConstants.L4_STELLATE; if (basalRandomNumber == null) { basalRandomNumber = new Vrand(getParam().getDendriteParam().getSeedValue()); } if (drawNumber == null) { drawNumber = new Vrand(getParam().getSeedValue()); } } @Override public Param getParam() { return Param.getInstance(); } /** * Function for setting a L4stellate neuron. * It sets the axon and creates the dendrites. */ @Override public void setNeuron() { String mes = "set for " + getType() + " neuron"; //logger.info(mes); Trigger trigger = Trigger.getInstance(); trigger.outPrintln(); trigger.outPrintln(mes); Point3f somaMid = new Point3f(soma.getMid()); Point3f axonEnd = new Point3f(somaMid); Point3f axonStart = new Point3f(somaMid); float somaRadius = ((Float) soma.getMeanRadius()).floatValue(); Vector3f deviation = new Vector3f(getParam().getDeviation().getX(), getParam().getDeviation().getY(), getParam().getDeviation().getZ()); deviation.scale(somaRadius); int up_down = drawNumber.fdraw() > 0.1 ? 1 : -1; AxonParam axonParam = getParam().getAxonParam(); axonEnd.x += axonParam.getFirstGen().getLenParam().getX() * drawNumber.fpm_onedraw(); axonEnd.y += axonParam.getFirstGen().getLenParam().getY() * drawNumber.fpm_onedraw(); axonEnd.z = somaMid.z + up_down * axonParam.getFirstGen().getLenParam().getZ() * (drawNumber.fdraw() + 0.5f); axonStart.z += up_down * somaRadius; soma.cylindricRepresentant(); //logger.info("set axon of L4stellate"); axon.set(axonStart, axonEnd, axonParam); //somaMid.z += somaRadius; logger.info("set dendirte (number of dendrites):" + getParam().getNumberOfDendrites()); for (int i = 0; i < getParam().getNumberOfDendrites(); ++i) { //logger.info("draw: " + drawNumber.draw()); Dendrite dendrite = new Dendrite(); dendrite.setDrawNumber(basalRandomNumber); dendrite.setDendrite(getParam().getDendriteParam(), soma, deviation, true); dendrites.add(dendrite); } } }