/*
* Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt)
* Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt)
*
* This file is part of NeuGen.
*
* NeuGen is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* as published by the Free Software Foundation.
*
* see: http://opensource.org/licenses/LGPL-3.0
* file://path/to/NeuGen/LICENSE
*
* NeuGen is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* This version of NeuGen includes copyright notice and attribution requirements.
* According to the LGPL this information must be displayed even if you modify
* the source code of NeuGen. The copyright statement/attribution may not be removed.
*
* Attribution Requirements:
*
* If you create derived work you must do the following regarding copyright
* notice and author attribution.
*
* Add an additional notice, stating that you modified NeuGen. In addition
* you must cite the publications listed below. A suitable notice might read
* "NeuGen source code modified by YourName 2012".
*
* Note, that these requirements are in full accordance with the LGPL v3
* (see 7. Additional Terms, b).
*
* Publications:
*
* S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 -
* Employing NeuGen 2.0 to automatically generate realistic
* morphologies of hippocapal neurons and neural networks in 3D.
* Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1
*
*
* J. P. Eberhard, A. Wanner, G. Wittum. NeuGen -
* A tool for the generation of realistic morphology
* of cortical neurons and neural networks in 3D.
* Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028
*
*/
package org.neugen.datastructures.neuron;
import java.io.Serializable;
import javax.vecmath.Point3f;
import javax.vecmath.Vector3f;
import org.neugen.datastructures.Dendrite;
import org.neugen.datastructures.parameter.KeyIdentificable;
import org.neugen.datastructures.parameter.ParameterConstants;
import org.neugen.gui.Trigger;
import org.neugen.utils.Vrand;
/**
*
* File: L5PyramidalNeuron.java
*
* @author Jens Eberhard
* @author Alexander Wanner
*
* Created on 14.12.2009, 09:36:31
*
* Subclass for a L5 pyramidal neuron.
*/
public class NeuronL5Pyramidal extends NeuronPyramidal implements Serializable {
public static class L5PyramidalParam extends PyramidalParam {
private static L5PyramidalParam instance;
/** Constructs contained parameters. */
public L5PyramidalParam(String lastKey) {
super(PyramidalParam.getInstance(), lastKey);
}
public L5PyramidalParam(KeyIdentificable parent, String lastKey) {
super(parent, lastKey);
}
public static void setInstance(L5PyramidalParam instance) {
L5PyramidalParam.instance = instance;
}
/** Returns instance. */
public static L5PyramidalParam getInstance() {
if (instance == null) {
L5PyramidalParam param = new L5PyramidalParam(ParameterConstants.SUFFIX_PATH_L5PYRAMIDAL_PARAM);
param.setApicalParam(ParameterConstants.LAST_KEY_APICAL);
param.setBasalParam(ParameterConstants.LAST_KEY_BASAL);
L5PyramidalParam.setInstance(param);
}
return instance;
}
}
private static final long serialVersionUID = -8689338926398031243L;
/** Constructor. */
public NeuronL5Pyramidal() {
super();
}
@Override
public L5PyramidalParam getParam() {
return L5PyramidalParam.getInstance();
}
/**
* Function for setting a pyramidal neuron.
* It sets the axon and creates the dendrites.
*/
@Override
public void setNeuron() {
String mes = "set for " + getType() + " neuron";
Trigger trigger = Trigger.getInstance();
trigger.outPrintln();
trigger.outPrintln(mes);
Point3f somaMid = new Point3f(soma.getMid());
Point3f axonEnd = new Point3f(somaMid);
Point3f axonStart = new Point3f(somaMid);
float somaRadius = soma.getMeanRadius();
Vector3f deviation = new Vector3f(getParam().getDeviation().getX(), getParam().getDeviation().getY(), getParam().getDeviation().getZ());
deviation.scale(somaRadius);
int up_down = -1;
axonEnd.x += getParam().getAxonParam().getFirstGen().getLenParam().getX() * drawNumber.fpm_onedraw();
axonEnd.y += getParam().getAxonParam().getFirstGen().getLenParam().getY() * drawNumber.fpm_onedraw();
axonEnd.z = somaMid.z + up_down * getParam().getAxonParam().getFirstGen().getLenParam().getZ() * (drawNumber.fdraw() + 0.5f);
axonStart.z += up_down * somaRadius;
soma.cylindricRepresentant();
axon.set(axonStart, axonEnd, getParam().getAxonParam());
somaMid.z += somaRadius;
//logger.info("set dendirte");
int npyramidaldendrite = getParam().getNumberOfApicalDendrites();
Vrand dendriteRandomNumber = new Vrand(getParam().getDendriteParam().getSeedValue());
Vrand apicalRandomNumber = new Vrand(getParam().getApicalParam().getSeedValue());
for (int i = 0; i < getParam().getNumberOfDendrites(); ++i) {
if (i < npyramidaldendrite) {
Dendrite dendrite = new Dendrite();
dendrite.setDrawNumber(apicalRandomNumber);
dendrite.setPyramidalDendrite(getParam().getApicalParam(), soma, deviation, getParam().getApicalParam().getNumOblique());
dendrites.add(dendrite);
} else {
Dendrite dendrite = new Dendrite();
dendrite.setDrawNumber(dendriteRandomNumber);
dendrite.setDendrite(getParam().getDendriteParam(), soma, deviation, false);
dendrites.add(dendrite);
}
}
}
}