/* * Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt) * Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt) * * This file is part of NeuGen. * * NeuGen is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * as published by the Free Software Foundation. * * see: http://opensource.org/licenses/LGPL-3.0 * file://path/to/NeuGen/LICENSE * * NeuGen is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * This version of NeuGen includes copyright notice and attribution requirements. * According to the LGPL this information must be displayed even if you modify * the source code of NeuGen. The copyright statement/attribution may not be removed. * * Attribution Requirements: * * If you create derived work you must do the following regarding copyright * notice and author attribution. * * Add an additional notice, stating that you modified NeuGen. In addition * you must cite the publications listed below. A suitable notice might read * "NeuGen source code modified by YourName 2012". * * Note, that these requirements are in full accordance with the LGPL v3 * (see 7. Additional Terms, b). * * Publications: * * S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 - * Employing NeuGen 2.0 to automatically generate realistic * morphologies of hippocapal neurons and neural networks in 3D. * Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1 * * * J. P. Eberhard, A. Wanner, G. Wittum. NeuGen - * A tool for the generation of realistic morphology * of cortical neurons and neural networks in 3D. * Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028 * */ package org.neugen.datastructures.neuron; import java.io.Serializable; import javax.vecmath.Point3f; import javax.vecmath.Vector3f; import org.neugen.datastructures.Dendrite; import org.neugen.datastructures.parameter.KeyIdentificable; import org.neugen.datastructures.parameter.ParameterConstants; import org.neugen.gui.Trigger; import org.neugen.utils.Vrand; /** * * File: L5PyramidalNeuron.java * * @author Jens Eberhard * @author Alexander Wanner * * Created on 14.12.2009, 09:36:31 * * Subclass for a L5 pyramidal neuron. */ public class NeuronL5Pyramidal extends NeuronPyramidal implements Serializable { public static class L5PyramidalParam extends PyramidalParam { private static L5PyramidalParam instance; /** Constructs contained parameters. */ public L5PyramidalParam(String lastKey) { super(PyramidalParam.getInstance(), lastKey); } public L5PyramidalParam(KeyIdentificable parent, String lastKey) { super(parent, lastKey); } public static void setInstance(L5PyramidalParam instance) { L5PyramidalParam.instance = instance; } /** Returns instance. */ public static L5PyramidalParam getInstance() { if (instance == null) { L5PyramidalParam param = new L5PyramidalParam(ParameterConstants.SUFFIX_PATH_L5PYRAMIDAL_PARAM); param.setApicalParam(ParameterConstants.LAST_KEY_APICAL); param.setBasalParam(ParameterConstants.LAST_KEY_BASAL); L5PyramidalParam.setInstance(param); } return instance; } } private static final long serialVersionUID = -8689338926398031243L; /** Constructor. */ public NeuronL5Pyramidal() { super(); } @Override public L5PyramidalParam getParam() { return L5PyramidalParam.getInstance(); } /** * Function for setting a pyramidal neuron. * It sets the axon and creates the dendrites. */ @Override public void setNeuron() { String mes = "set for " + getType() + " neuron"; Trigger trigger = Trigger.getInstance(); trigger.outPrintln(); trigger.outPrintln(mes); Point3f somaMid = new Point3f(soma.getMid()); Point3f axonEnd = new Point3f(somaMid); Point3f axonStart = new Point3f(somaMid); float somaRadius = soma.getMeanRadius(); Vector3f deviation = new Vector3f(getParam().getDeviation().getX(), getParam().getDeviation().getY(), getParam().getDeviation().getZ()); deviation.scale(somaRadius); int up_down = -1; axonEnd.x += getParam().getAxonParam().getFirstGen().getLenParam().getX() * drawNumber.fpm_onedraw(); axonEnd.y += getParam().getAxonParam().getFirstGen().getLenParam().getY() * drawNumber.fpm_onedraw(); axonEnd.z = somaMid.z + up_down * getParam().getAxonParam().getFirstGen().getLenParam().getZ() * (drawNumber.fdraw() + 0.5f); axonStart.z += up_down * somaRadius; soma.cylindricRepresentant(); axon.set(axonStart, axonEnd, getParam().getAxonParam()); somaMid.z += somaRadius; //logger.info("set dendirte"); int npyramidaldendrite = getParam().getNumberOfApicalDendrites(); Vrand dendriteRandomNumber = new Vrand(getParam().getDendriteParam().getSeedValue()); Vrand apicalRandomNumber = new Vrand(getParam().getApicalParam().getSeedValue()); for (int i = 0; i < getParam().getNumberOfDendrites(); ++i) { if (i < npyramidaldendrite) { Dendrite dendrite = new Dendrite(); dendrite.setDrawNumber(apicalRandomNumber); dendrite.setPyramidalDendrite(getParam().getApicalParam(), soma, deviation, getParam().getApicalParam().getNumOblique()); dendrites.add(dendrite); } else { Dendrite dendrite = new Dendrite(); dendrite.setDrawNumber(dendriteRandomNumber); dendrite.setDendrite(getParam().getDendriteParam(), soma, deviation, false); dendrites.add(dendrite); } } } }