/*
* Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt)
* Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt)
*
* This file is part of NeuGen.
*
* NeuGen is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* as published by the Free Software Foundation.
*
* see: http://opensource.org/licenses/LGPL-3.0
* file://path/to/NeuGen/LICENSE
*
* NeuGen is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* This version of NeuGen includes copyright notice and attribution requirements.
* According to the LGPL this information must be displayed even if you modify
* the source code of NeuGen. The copyright statement/attribution may not be removed.
*
* Attribution Requirements:
*
* If you create derived work you must do the following regarding copyright
* notice and author attribution.
*
* Add an additional notice, stating that you modified NeuGen. In addition
* you must cite the publications listed below. A suitable notice might read
* "NeuGen source code modified by YourName 2012".
*
* Note, that these requirements are in full accordance with the LGPL v3
* (see 7. Additional Terms, b).
*
* Publications:
*
* S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 -
* Employing NeuGen 2.0 to automatically generate realistic
* morphologies of hippocapal neurons and neural networks in 3D.
* Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1
*
*
* J. P. Eberhard, A. Wanner, G. Wittum. NeuGen -
* A tool for the generation of realistic morphology
* of cortical neurons and neural networks in 3D.
* Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028
*
*/
package org.neugen.datastructures.neuron;
import java.io.Serializable;
import org.neugen.gui.Trigger;
import javax.vecmath.Point3f;
import javax.vecmath.Vector3f;
import org.neugen.datastructures.DataStructureConstants;
import org.neugen.datastructures.Dendrite;
import org.neugen.datastructures.parameter.ParameterConstants;
import org.neugen.utils.Vrand;
/**
*
* @author Sergei Wolf
*/
public final class NeuronCA1Pyramidal extends NeuronPyramidal implements Serializable, Neuron {
private static final long serialVersionUID = 44645745634L;
public static final class Param extends PyramidalParam {
private static Param instance;
private Param(String lastKey) {
super(PyramidalParam.getInstance(), lastKey);
if (instance != null) {
throw new IllegalStateException("Already instantiated");
}
}
/**
* Get the value of instance
*
* @return the value of instance
*/
public static Param getInstance() {
if (instance == null) {
Param ca1PyrParam = new Param(ParameterConstants.SUFFIX_PATH_CA1PYRAMIDAL);
ca1PyrParam.setApicalParam(ParameterConstants.LAST_KEY_APICAL);
ca1PyrParam.setBasalParam(ParameterConstants.LAST_KEY_BASAL);
setInstance(ca1PyrParam);
}
return instance;
}
/**
* Set the value of instance
*
* @param instance new value of instance
*/
public static void setInstance(Param instance) {
Param.instance = instance;
}
}
//Constructor
public NeuronCA1Pyramidal() {
super();
type = DataStructureConstants.CA1_PYRAMIDAL;
if (basalRandomNumber == null) {
basalRandomNumber = new Vrand(getParam().getDendriteParam().getSeedValue());
}
if (apicalRandomNumber == null) {
apicalRandomNumber = new Vrand(getParam().getApicalParam().getSeedValue());
}
if (drawNumber == null) {
drawNumber = new Vrand(getParam().getSeedValue());
}
}
/*
public static void deleteData() {
basalRandomNumber = null;
apicalRandomNumber = null;
drawNumber = null;
}
*
*/
@Override
public Param getParam() {
return Param.getInstance();
}
/**
* Function for setting a pyramidal neuron.
* It sets the axon and creates the dendrites.
*/
@Override
public void setNeuron() {
String mes = "set for " + getType() + " neuron";
logger.info("seed: " + drawNumber.randx);
//logger.info(mes);
Trigger trigger = Trigger.getInstance();
trigger.outPrintln();
trigger.outPrintln(mes);
Point3f somaMid = new Point3f(soma.getMid());
Point3f axonEnd = new Point3f(somaMid);
Point3f axonStart = new Point3f(somaMid);
float somaRadius = ((Float) soma.getMeanRadius()).floatValue();
somaMid.z += somaRadius;
logger.info("path: " + getParam().getFullKey().toString());
Vector3f deviation = new Vector3f(getParam().getDeviation().getX(), getParam().getDeviation().getY(), getParam().getDeviation().getZ());
deviation.scale(somaRadius);
int up_down = -1;
axonEnd.x += getParam().getAxonParam().getFirstGen().getLenParam().getX() * drawNumber.fpm_onedraw();
axonEnd.y += getParam().getAxonParam().getFirstGen().getLenParam().getY() * drawNumber.fpm_onedraw();
axonEnd.z = somaMid.z + up_down * getParam().getAxonParam().getFirstGen().getLenParam().getZ() * (drawNumber.fdraw() + 0.5f);
axonStart.z += up_down * somaRadius;
//logger.info("set axon");
axon.set(axonStart, axonEnd, getParam().getAxonParam());
//logger.info("set dendirte");
int npyramidaldendrite = getParam().getNumberOfApicalDendrites();
float scale = 1.0f;
boolean down = true;
Dendrite dendrite;
for (int i = 0; i < getParam().getNumberOfDendrites(); ++i) {
if (i < npyramidaldendrite) {
dendrite = new Dendrite();
dendrite.setDrawNumber(apicalRandomNumber);
dendrite.setPyramidalDendrite(getParam().getApicalParam(), soma, deviation, getParam().getApicalParam().getNumOblique());
dendrites.add(dendrite);
} else {
dendrite = new Dendrite();
dendrite.setDrawNumber(basalRandomNumber);
//dendrite.setDendrite(getParam().getDendriteParam(), soma, deviation, false);
dendrite.setBasalDendrite(getParam().getDendriteParam(), soma, deviation, scale, down);
dendrites.add(dendrite);
}
}
}
}