/* * Copyright (c) 2005–2012 Goethe Center for Scientific Computing - Simulation and Modelling (G-CSC Frankfurt) * Copyright (c) 2012-2015 Goethe Center for Scientific Computing - Computational Neuroscience (G-CSC Frankfurt) * * This file is part of NeuGen. * * NeuGen is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * as published by the Free Software Foundation. * * see: http://opensource.org/licenses/LGPL-3.0 * file://path/to/NeuGen/LICENSE * * NeuGen is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * This version of NeuGen includes copyright notice and attribution requirements. * According to the LGPL this information must be displayed even if you modify * the source code of NeuGen. The copyright statement/attribution may not be removed. * * Attribution Requirements: * * If you create derived work you must do the following regarding copyright * notice and author attribution. * * Add an additional notice, stating that you modified NeuGen. In addition * you must cite the publications listed below. A suitable notice might read * "NeuGen source code modified by YourName 2012". * * Note, that these requirements are in full accordance with the LGPL v3 * (see 7. Additional Terms, b). * * Publications: * * S. Wolf, S. Grein, G. Queisser. NeuGen 2.0 - * Employing NeuGen 2.0 to automatically generate realistic * morphologies of hippocapal neurons and neural networks in 3D. * Neuroinformatics, 2013, 11(2), pp. 137-148, doi: 10.1007/s12021-012-9170-1 * * * J. P. Eberhard, A. Wanner, G. Wittum. NeuGen - * A tool for the generation of realistic morphology * of cortical neurons and neural networks in 3D. * Neurocomputing, 70(1-3), pp. 327-343, doi: 10.1016/j.neucom.2006.01.028 * */ package org.neugen.datastructures.neuron; import java.io.Serializable; import javax.vecmath.Point3f; import javax.vecmath.Vector3f; import org.neugen.datastructures.DataStructureConstants; import org.neugen.datastructures.Dendrite; import org.neugen.datastructures.Region; import org.neugen.datastructures.parameter.AxonParam; import org.neugen.datastructures.parameter.NeuronParam; import org.neugen.datastructures.parameter.ParameterConstants; import org.neugen.gui.Trigger; import org.neugen.utils.Vrand; /** * * @author Sergei Wolf */ public final class NeuronSomatostatin extends NeuronBase implements Serializable, Neuron { public static final class Param extends NeuronParam { private static Param instance; private Param(String lastKey) { super(NeuronParam.getInstance(), lastKey); } /** * Get the value of instance * * @return the value of instance */ public static Param getInstance() { if (instance == null) { Param param = new Param(ParameterConstants.SUFFIX_PATH_SOM); param.setBasalParam(ParameterConstants.LAST_KEY_DENDRITE); setInstance(param); } return instance; } /** * Set the value of instance * * @param instance new value of instance */ public static void setInstance(Param instance) { Param.instance = instance; } } private static final long serialVersionUID = -3331922269185554614L; /** Constructor. */ public NeuronSomatostatin() { super(); type = DataStructureConstants.SOM_SOMATOSTATIN; if (basalRandomNumber == null) { //logger.info("calretinin set basal random number"); basalRandomNumber = new Vrand(getParam().getDendriteParam().getSeedValue()); } if (drawNumber == null) { drawNumber = new Vrand(getParam().getSeedValue()); } } @Override public Param getParam() { return Param.getInstance(); } /** * Function for setting a Somatostatin neuron. * It sets the axon and creates the dendrites. */ @Override public void setNeuron() { Param param = getParam(); String mes = "set for " + getType() + " neuron"; logger.info(mes); Trigger trigger = Trigger.getInstance(); trigger.outPrintln(); trigger.outPrintln(mes); Point3f somaMid = new Point3f(soma.getMid()); Point3f axonStart = new Point3f(somaMid); Point3f axonEnd = new Point3f(somaMid); float somaRadius = ((Float) soma.getMeanRadius()).floatValue(); Vector3f deviation = new Vector3f(param.getDeviation().getX(), param.getDeviation().getY(), param.getDeviation().getZ()); deviation.scale(somaRadius); Region.Param.CA1Param ca1RegionParam = Region.Param.getInstance().getCa1Param(); float strOriensHeight = ca1RegionParam.getStratumOriens(); float strPyramidaleHeight = ca1RegionParam.getStratumPyramidale(); float strRadiatumHeight = ca1RegionParam.getStratumRadiatum(); float strLacMolecHeight = ca1RegionParam.getStratumLacunosum(); float regionToLacMolHight = strOriensHeight + strRadiatumHeight + strPyramidaleHeight; logger.info("hight to lac mol: " + regionToLacMolHight); //int up_down = drawNumber.fdraw() > 0.1 ? 1 : -1; int up_down = 1; AxonParam axonParam = param.getAxonParam(); /* float axonLengthX = axonParam.getFirstGen().getLenParam().getX(); float axonLengthY = axonParam.getFirstGen().getLenParam().getY(); float axonLengthZ = axonParam.getFirstGen().getLenParam().getZ(); Vector3f lenVec = new Vector3f(axonLengthX, axonLengthY, axonLengthZ); float axonLen = lenVec.length(); logger.info("länge des Axons: " + axonLen); * */ axonEnd.x += axonParam.getFirstGen().getLenParam().getX() * drawNumber.fpm_onedraw(); axonEnd.y += axonParam.getFirstGen().getLenParam().getY() * drawNumber.fpm_onedraw(); axonEnd.z += up_down * axonParam.getFirstGen().getLenParam().getZ() * (drawNumber.fdraw() + 0.5f); /* logger.info("axon end x: " + axonEnd.x); logger.info("axon end y: " + axonEnd.y); logger.info("axon end z: " + axonEnd.z); * */ if(axonEnd.z < regionToLacMolHight) { axonEnd.z = regionToLacMolHight + (2 * strLacMolecHeight); } if(axonEnd.z > regionToLacMolHight + strLacMolecHeight) { axonEnd.z = regionToLacMolHight + (2 * strLacMolecHeight); } axonStart.z += up_down * somaRadius; axon.setBranchStart(1.1f); // die Axone sollen in der oberen Schicht bleiben! ende und anfang berechnen! axon.set(axonStart, axonEnd, axonParam); //soma_x[d - 1] += soma_radius; float scale; boolean down; Dendrite dendrite; for (int i = 0; i < param.getNumberOfDendrites(); ++i) { //logger.info("draw: " + drawNumber.draw()); dendrite = new Dendrite(); dendrite.setDrawNumber(basalRandomNumber); if (i < param.getNumberOfDendrites() / 2) { down = false; scale = 1.0f; dendrite.setHorizontalBasalDendrite(param.getDendriteParam(), soma, deviation, scale, down, true); } else { down = true; scale = 1.0f; //dendrite.setDendrite(getParam().getDendriteParam(), soma, deviation, true); dendrite.setHorizontalBasalDendrite(param.getDendriteParam(), soma, deviation, scale, down, true); } //dendrite.setDendrite(calretininPar.getDendriteParam(), soma, deviation, true); dendrites.add(dendrite); } } }