/* * Licensed to the Apache Software Foundation (ASF) under one or more contributor license * agreements. See the NOTICE file distributed with this work for additional information regarding * copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. You may obtain a * copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express * or implied. See the License for the specific language governing permissions and limitations under * the License. */ package org.apache.geode.internal.tcp; import org.apache.geode.DataSerializer; import org.apache.geode.distributed.internal.DMStats; import org.apache.geode.distributed.internal.DistributionConfig; import org.apache.geode.distributed.internal.DistributionMessage; import org.apache.geode.internal.*; import org.apache.geode.internal.i18n.LocalizedStrings; import org.apache.geode.internal.logging.LogService; import it.unimi.dsi.fastutil.objects.Object2ObjectMap; import it.unimi.dsi.fastutil.objects.Object2ObjectOpenHashMap; import it.unimi.dsi.fastutil.objects.ObjectIterator; import org.apache.logging.log4j.Logger; import java.io.IOException; import java.io.OutputStream; import java.io.UTFDataFormatException; import java.nio.ByteBuffer; import java.util.ArrayList; import java.util.Iterator; import java.util.List; /** * <p> * MsgStreamer supports streaming a message to a tcp Connection in chunks. This allows us to send a * message without needing to perserialize it completely in memory thus saving buffer memory. * * @since GemFire 5.0.2 * */ public class MsgStreamer extends OutputStream implements ObjToByteArraySerializer, BaseMsgStreamer, ByteBufferWriter { private static final Logger logger = LogService.getLogger(); /** * List of connections to send this msg to. */ private final List<?> cons; /** * Any exceptions that happen during sends */ private ConnectExceptions ce; /** * The byte buffer we used for preparing a chunk of the message. Currently this buffer is obtained * from the connection. */ private final ByteBuffer buffer; private int flushedBytes = 0; // the message this streamer is to send private final DistributionMessage msg; /** * True if this message went out as a normal one (it fit it one chunk) False if this message * needed to be chunked. */ private boolean normalMsg = false; /** * Set to true when we have started serializing a message. If this is true and doneWritingMsg is * false and we think we have finished writing the msg then we have a problem. */ private boolean startedSerializingMsg = false; /** * Set to true after last byte of message has been written to this stream. */ private boolean doneWritingMsg = false; final private DMStats stats; private short msgId; private long serStartTime; private final boolean directReply; /** * Called to free up resources used by this streamer after the streamer has produced its message. */ protected final void release() { MsgIdGenerator.release(this.msgId); this.buffer.clear(); this.overflowBuf = null; Buffers.releaseSenderBuffer(this.buffer, this.stats); } /** * Returns an exception the describes which cons the message was not sent to. Call this after * {@link #writeMessage}. */ public final ConnectExceptions getConnectExceptions() { return this.ce; } /** * Returns a list of the Connections that the message was sent to. Call this after * {@link #writeMessage}. */ public final List<?> getSentConnections() { return this.cons; } /** * Create a msg streamer that will send the given msg to the given cons. * * Note: This is no longer supposed to be called directly rather the {@link #create} method should * now be used. */ MsgStreamer(List<?> cons, DistributionMessage msg, boolean directReply, DMStats stats, int sendBufferSize) { this.stats = stats; this.msg = msg; this.cons = cons; this.buffer = Buffers.acquireSenderBuffer(sendBufferSize, stats); this.buffer.clear(); this.buffer.position(Connection.MSG_HEADER_BYTES); this.msgId = MsgIdGenerator.NO_MSG_ID; this.directReply = directReply; startSerialization(); } /** * Create message streamers splitting into versioned streamers, if required, for given list of * connections to remote nodes. This method can either return a single MsgStreamer object or a * List of MsgStreamer objects. */ public static BaseMsgStreamer create(List<?> cons, final DistributionMessage msg, final boolean directReply, final DMStats stats) { final Connection firstCon = (Connection) cons.get(0); // split into different versions if required Version version; final int numCons = cons.size(); if (numCons > 1) { Connection con; Object2ObjectOpenHashMap versionToConnMap = null; int numVersioned = 0; for (Object c : cons) { con = (Connection) c; if ((version = con.getRemoteVersion()) != null) { if (versionToConnMap == null) { versionToConnMap = new Object2ObjectOpenHashMap(); } @SuppressWarnings("unchecked") ArrayList<Object> vcons = (ArrayList<Object>) versionToConnMap.get(version); if (vcons == null) { vcons = new ArrayList<Object>(numCons); versionToConnMap.put(version, vcons); } vcons.add(con); numVersioned++; } } if (versionToConnMap == null) { return new MsgStreamer(cons, msg, directReply, stats, firstCon.getSendBufferSize()); } else { // if there is a versioned stream created, then split remaining // connections to unversioned stream final ArrayList<MsgStreamer> streamers = new ArrayList<MsgStreamer>(versionToConnMap.size() + 1); final int sendBufferSize = firstCon.getSendBufferSize(); if (numCons > numVersioned) { // allocating list of numCons size so that as the result of // getSentConnections it may not need to be reallocted later final ArrayList<Object> unversionedCons = new ArrayList<Object>(numCons); for (Object c : cons) { con = (Connection) c; if ((version = con.getRemoteVersion()) == null) { unversionedCons.add(con); } } streamers.add(new MsgStreamer(unversionedCons, msg, directReply, stats, sendBufferSize)); } for (ObjectIterator<Object2ObjectMap.Entry> itr = versionToConnMap.object2ObjectEntrySet().fastIterator(); itr.hasNext();) { Object2ObjectMap.Entry entry = itr.next(); Object ver = entry.getKey(); Object l = entry.getValue(); streamers.add(new VersionedMsgStreamer((List<?>) l, msg, directReply, stats, sendBufferSize, (Version) ver)); } return new MsgStreamerList(streamers); } } else if ((version = firstCon.getRemoteVersion()) == null) { return new MsgStreamer(cons, msg, directReply, stats, firstCon.getSendBufferSize()); } else { // create a single VersionedMsgStreamer return new VersionedMsgStreamer(cons, msg, directReply, stats, firstCon.getSendBufferSize(), version); } } /** * set connections to be "in use" and schedule alert tasks * * @param startTime * @param ackTimeout * @param ackSDTimeout */ public void reserveConnections(long startTime, long ackTimeout, long ackSDTimeout) { for (Iterator it = cons.iterator(); it.hasNext();) { Connection con = (Connection) it.next(); con.setInUse(true, startTime, ackTimeout, ackSDTimeout, cons); if (ackTimeout > 0) { con.scheduleAckTimeouts(); } } } private void startSerialization() { this.serStartTime = stats.startMsgSerialization(); } /** * @throws IOException if serialization failure */ public final int writeMessage() throws IOException { // if (logger.isTraceEnabled()) logger.trace(this.msg); try { this.startedSerializingMsg = true; InternalDataSerializer.writeDSFID(this.msg, this); this.doneWritingMsg = true; if (this.flushedBytes == 0) { // message fit in one chunk this.normalMsg = true; } realFlush(true); return this.flushedBytes; } finally { release(); } } /** write the low-order 8 bits of the given int */ @Override public final void write(int b) { // if (logger.isTraceEnabled()) logger.trace(" byte={}", b); ensureCapacity(1); if (this.overflowBuf != null) { this.overflowBuf.write(b); return; } this.buffer.put((byte) b); } private final void ensureCapacity(int amount) { if (this.overflowBuf != null) { return; } int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (amount > remainingSpace) { realFlush(false); } } @Override public void flush() { // this is a noop so that when ObjectOutputStream calls us // for each chunk from it we will not send data early to our connection. } private int overflowMode = 0; private HeapDataOutputStream overflowBuf = null; private boolean isOverflowMode() { return this.overflowMode > 0; } private void enableOverflowMode() { this.overflowMode++; } private void disableOverflowMode() { this.overflowMode--; if (!isOverflowMode()) { this.overflowBuf = null; } } public final void realFlush(boolean lastFlushForMessage) { if (isOverflowMode()) { if (this.overflowBuf == null) { this.overflowBuf = new HeapDataOutputStream( this.buffer.capacity() - Connection.MSG_HEADER_BYTES, Version.CURRENT); } return; } this.buffer.flip(); setMessageHeader(); final int serializedBytes = this.buffer.limit(); this.flushedBytes += serializedBytes; DistributionMessage conflationMsg = null; if (this.normalMsg) { // we can't conflate chunked messages; this fixes bug 36633 conflationMsg = this.msg; } this.stats.endMsgSerialization(this.serStartTime); for (Iterator it = this.cons.iterator(); it.hasNext();) { Connection con = (Connection) it.next(); try { con.sendPreserialized(this.buffer, lastFlushForMessage && this.msg.containsRegionContentChange(), conflationMsg); } catch (IOException ex) { it.remove(); if (this.ce == null) this.ce = new ConnectExceptions(); this.ce.addFailure(con.getRemoteAddress(), ex); con.closeForReconnect( LocalizedStrings.MsgStreamer_CLOSING_DUE_TO_0.toLocalizedString("IOException")); } catch (ConnectionException ex) { it.remove(); if (this.ce == null) this.ce = new ConnectExceptions(); this.ce.addFailure(con.getRemoteAddress(), ex); con.closeForReconnect( LocalizedStrings.MsgStreamer_CLOSING_DUE_TO_0.toLocalizedString("ConnectionException")); } this.buffer.rewind(); } startSerialization(); this.buffer.clear(); this.buffer.position(Connection.MSG_HEADER_BYTES); } @Override public final void close() throws IOException { try { if (this.startedSerializingMsg && !this.doneWritingMsg) { // if we wrote any bytes on the cnxs then we need to close them // since they have been corrupted by a partial serialization. if (this.flushedBytes > 0) { for (Iterator it = this.cons.iterator(); it.hasNext();) { Connection con = (Connection) it.next(); con.closeForReconnect("Message serialization could not complete"); } } } } finally { super.close(); } } /** override OutputStream's write() */ @Override public final void write(byte[] source, int offset, int len) { // if (logger.isTraceEnabled()) { // logger.trace(" bytes={} offset={} len={}", source, offset, len); // } if (this.overflowBuf != null) { this.overflowBuf.write(source, offset, len); return; } while (len > 0) { int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (remainingSpace == 0) { realFlush(false); if (this.overflowBuf != null) { this.overflowBuf.write(source, offset, len); return; } } else { int chunkSize = remainingSpace; if (len < chunkSize) { chunkSize = len; } this.buffer.put(source, offset, chunkSize); offset += chunkSize; len -= chunkSize; } } } @Override public final void write(ByteBuffer bb) { // if (logger.isTraceEnabled()) { // logger.trace(" bytes={} offset={} len={}", source, offset, len); // } if (this.overflowBuf != null) { this.overflowBuf.write(bb); return; } int len = bb.remaining(); while (len > 0) { int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (remainingSpace == 0) { realFlush(false); if (this.overflowBuf != null) { this.overflowBuf.write(bb); return; } } else { int chunkSize = remainingSpace; if (len < chunkSize) { chunkSize = len; } int oldLimit = bb.limit(); bb.limit(bb.position() + chunkSize); this.buffer.put(bb); bb.limit(oldLimit); len -= chunkSize; } } } /** * write the header after the message has been written to the stream */ private final void setMessageHeader() { Assert.assertTrue(this.overflowBuf == null); Assert.assertTrue(!isOverflowMode()); // int processorType = this.msg.getProcessorType(); int msgType; if (this.doneWritingMsg) { if (this.normalMsg) { msgType = Connection.NORMAL_MSG_TYPE; } else { msgType = Connection.END_CHUNKED_MSG_TYPE; } if (directReply) { msgType |= Connection.DIRECT_ACK_BIT; } } else { msgType = Connection.CHUNKED_MSG_TYPE; } if (!this.normalMsg) { if (this.msgId == MsgIdGenerator.NO_MSG_ID) { this.msgId = MsgIdGenerator.obtain(); } } this.buffer.putInt(Connection.MSG_HEADER_SIZE_OFFSET, Connection.calcHdrSize(this.buffer.limit() - Connection.MSG_HEADER_BYTES)); this.buffer.put(Connection.MSG_HEADER_TYPE_OFFSET, (byte) (msgType & 0xff)); this.buffer.putShort(Connection.MSG_HEADER_ID_OFFSET, this.msgId); this.buffer.position(0); } // DataOutput methods /** * Writes a <code>boolean</code> value to this output stream. If the argument <code>v</code> is * <code>true</code>, the value <code>(byte)1</code> is written; if <code>v</code> is * <code>false</code>, the value <code>(byte)0</code> is written. The byte written by this method * may be read by the <code>readBoolean</code> method of interface <code>DataInput</code>, which * will then return a <code>boolean</code> equal to <code>v</code>. * * @param v the boolean to be written. */ public final void writeBoolean(boolean v) { write(v ? 1 : 0); } /** * Writes to the output stream the eight low- order bits of the argument <code>v</code>. The 24 * high-order bits of <code>v</code> are ignored. (This means that <code>writeByte</code> does * exactly the same thing as <code>write</code> for an integer argument.) The byte written by this * method may be read by the <code>readByte</code> method of interface <code>DataInput</code>, * which will then return a <code>byte</code> equal to <code>(byte)v</code>. * * @param v the byte value to be written. */ public final void writeByte(int v) { write(v); } /** * Writes two bytes to the output stream to represent the value of the argument. The byte values * to be written, in the order shown, are: * <p> * * <pre> * <code> * (byte)(0xff & (v >> 8)) * (byte)(0xff & v) * </code> * </pre> * <p> * The bytes written by this method may be read by the <code>readShort</code> method of interface * <code>DataInput</code> , which will then return a <code>short</code> equal to * <code>(short)v</code>. * * @param v the <code>short</code> value to be written. */ public final void writeShort(int v) { // if (logger.isTraceEnabled()) logger.trace(" short={}", v); ensureCapacity(2); if (this.overflowBuf != null) { this.overflowBuf.writeShort(v); return; } this.buffer.putShort((short) v); } /** * Writes a <code>char</code> value, wich is comprised of two bytes, to the output stream. The * byte values to be written, in the order shown, are: * <p> * * <pre> * <code> * (byte)(0xff & (v >> 8)) * (byte)(0xff & v) * </code> * </pre> * <p> * The bytes written by this method may be read by the <code>readChar</code> method of interface * <code>DataInput</code> , which will then return a <code>char</code> equal to * <code>(char)v</code>. * * @param v the <code>char</code> value to be written. */ public final void writeChar(int v) { // if (logger.isTraceEnabled()) logger.trace(" char={}", v); ensureCapacity(2); if (this.overflowBuf != null) { this.overflowBuf.writeChar(v); return; } this.buffer.putChar((char) v); } /** * Writes an <code>int</code> value, which is comprised of four bytes, to the output stream. The * byte values to be written, in the order shown, are: * <p> * * <pre> * <code> * (byte)(0xff & (v >> 24)) * (byte)(0xff & (v >> 16)) * (byte)(0xff & (v >> 8)) * (byte)(0xff & v) * </code> * </pre> * <p> * The bytes written by this method may be read by the <code>readInt</code> method of interface * <code>DataInput</code> , which will then return an <code>int</code> equal to <code>v</code>. * * @param v the <code>int</code> value to be written. */ public final void writeInt(int v) { // if (logger.isTraceEnabled()) logger.trace(" int={}", v); ensureCapacity(4); if (this.overflowBuf != null) { this.overflowBuf.writeInt(v); return; } this.buffer.putInt(v); } /** * Writes a <code>long</code> value, which is comprised of eight bytes, to the output stream. The * byte values to be written, in the order shown, are: * <p> * * <pre> * <code> * (byte)(0xff & (v >> 56)) * (byte)(0xff & (v >> 48)) * (byte)(0xff & (v >> 40)) * (byte)(0xff & (v >> 32)) * (byte)(0xff & (v >> 24)) * (byte)(0xff & (v >> 16)) * (byte)(0xff & (v >> 8)) * (byte)(0xff & v) * </code> * </pre> * <p> * The bytes written by this method may be read by the <code>readLong</code> method of interface * <code>DataInput</code> , which will then return a <code>long</code> equal to <code>v</code>. * * @param v the <code>long</code> value to be written. */ public final void writeLong(long v) { // if (logger.isTraceEnabled()) logger.trace(" long={}", v); ensureCapacity(8); if (this.overflowBuf != null) { this.overflowBuf.writeLong(v); return; } this.buffer.putLong(v); } /** * Writes a <code>float</code> value, which is comprised of four bytes, to the output stream. It * does this as if it first converts this <code>float</code> value to an <code>int</code> in * exactly the manner of the <code>Float.floatToIntBits</code> method and then writes the * <code>int</code> value in exactly the manner of the <code>writeInt</code> method. The bytes * written by this method may be read by the <code>readFloat</code> method of interface * <code>DataInput</code>, which will then return a <code>float</code> equal to <code>v</code>. * * @param v the <code>float</code> value to be written. */ public final void writeFloat(float v) { // if (logger.isTraceEnabled()) logger.trace(" float={}", v); ensureCapacity(4); if (this.overflowBuf != null) { this.overflowBuf.writeFloat(v); return; } this.buffer.putFloat(v); } /** * Writes a <code>double</code> value, which is comprised of eight bytes, to the output stream. It * does this as if it first converts this <code>double</code> value to a <code>long</code> in * exactly the manner of the <code>Double.doubleToLongBits</code> method and then writes the * <code>long</code> value in exactly the manner of the <code>writeLong</code> method. The bytes * written by this method may be read by the <code>readDouble</code> method of interface * <code>DataInput</code>, which will then return a <code>double</code> equal to <code>v</code>. * * @param v the <code>double</code> value to be written. */ public final void writeDouble(double v) { // if (logger.isTraceEnabled()) logger.trace(" double={}", v); ensureCapacity(8); if (this.overflowBuf != null) { this.overflowBuf.writeDouble(v); return; } this.buffer.putDouble(v); } /** * Writes a string to the output stream. For every character in the string <code>s</code>, taken * in order, one byte is written to the output stream. If <code>s</code> is <code>null</code>, a * <code>NullPointerException</code> is thrown. * <p> * If <code>s.length</code> is zero, then no bytes are written. Otherwise, the character * <code>s[0]</code> is written first, then <code>s[1]</code>, and so on; the last character * written is <code>s[s.length-1]</code>. For each character, one byte is written, the low-order * byte, in exactly the manner of the <code>writeByte</code> method . The high-order eight bits of * each character in the string are ignored. * * @param str the string of bytes to be written. */ public final void writeBytes(String str) { // if (logger.isTraceEnabled()) logger.trace(" bytes={}", str); if (this.overflowBuf != null) { this.overflowBuf.writeBytes(str); return; } int strlen = str.length(); if (strlen > 0) { for (int i = 0; i < strlen; i++) { writeByte((byte) str.charAt(i)); } } } /** * Writes every character in the string <code>s</code>, to the output stream, in order, two bytes * per character. If <code>s</code> is <code>null</code>, a <code>NullPointerException</code> is * thrown. If <code>s.length</code> is zero, then no characters are written. Otherwise, the * character <code>s[0]</code> is written first, then <code>s[1]</code>, and so on; the last * character written is <code>s[s.length-1]</code>. For each character, two bytes are actually * written, high-order byte first, in exactly the manner of the <code>writeChar</code> method. * * @param s the string value to be written. */ public final void writeChars(String s) { // if (logger.isTraceEnabled()) logger.trace(" chars={}", s); if (this.overflowBuf != null) { this.overflowBuf.writeChars(s); return; } int len = s.length(); int offset = 0; while (len > 0) { int remainingCharSpace = (this.buffer.capacity() - this.buffer.position()) / 2; if (remainingCharSpace == 0) { realFlush(false); if (this.overflowBuf != null) { this.overflowBuf.writeChars(s.substring(offset)); return; } } else { int chunkSize = remainingCharSpace; if (len < chunkSize) { chunkSize = len; } for (int i = 0; i < chunkSize; i++) { this.buffer.putChar(s.charAt(offset + i)); } offset += chunkSize; len -= chunkSize; } } } /** * Use -Dgemfire.ASCII_STRINGS=true if all String instances contain ASCII characters. Setting this * to true gives a performance improvement. */ private static final boolean ASCII_STRINGS = Boolean.getBoolean(DistributionConfig.GEMFIRE_PREFIX + "ASCII_STRINGS"); /** * Writes two bytes of length information to the output stream, followed by the Java modified UTF * representation of every character in the string <code>s</code>. If <code>s</code> is * <code>null</code>, a <code>NullPointerException</code> is thrown. Each character in the string * <code>s</code> is converted to a group of one, two, or three bytes, depending on the value of * the character. * <p> * If a character <code>c</code> is in the range <code>\u0001</code> through * <code>\u007f</code>, it is represented by one byte: * <p> * * <pre> * (byte) c * </pre> * <p> * If a character <code>c</code> is <code>\u0000</code> or is in the range * <code>\u0080</code> through <code>\u07ff</code>, then it is represented by two bytes, * to be written in the order shown: * <p> * * <pre> * <code> * (byte)(0xc0 | (0x1f & (c >> 6))) * (byte)(0x80 | (0x3f & c)) * </code> * </pre> * <p> * If a character <code>c</code> is in the range <code>\u0800</code> through * <code>uffff</code>, then it is represented by three bytes, to be written in the order shown: * <p> * * <pre> * <code> * (byte)(0xe0 | (0x0f & (c >> 12))) * (byte)(0x80 | (0x3f & (c >> 6))) * (byte)(0x80 | (0x3f & c)) * </code> * </pre> * <p> * First, the total number of bytes needed to represent all the characters of <code>s</code> is * calculated. If this number is larger than <code>65535</code>, then a * <code>UTFDataFormatException</code> is thrown. Otherwise, this length is written to the output * stream in exactly the manner of the <code>writeShort</code> method; after this, the one-, two-, * or three-byte representation of each character in the string <code>s</code> is written. * <p> * The bytes written by this method may be read by the <code>readUTF</code> method of interface * <code>DataInput</code> , which will then return a <code>String</code> equal to <code>s</code>. * * @param str the string value to be written. * @exception IOException if an I/O error occurs. */ public final void writeUTF(String str) throws IOException { // if (logger.isTraceEnabled()) logger.trace(" utf={}", str); if (this.overflowBuf != null) { this.overflowBuf.writeUTF(str); return; } if (ASCII_STRINGS) { writeAsciiUTF(str); } else { writeFullUTF(str); } } private final void writeAsciiUTF(String str) throws IOException { int len = str.length(); if (len > 65535) { throw new UTFDataFormatException(); } writeShort(len); int offset = 0; while (len > 0) { int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (remainingSpace == 0) { realFlush(false); if (this.overflowBuf != null) { this.overflowBuf.write(str.substring(offset).getBytes()); return; } } else { int chunkSize = remainingSpace; if (len < chunkSize) { chunkSize = len; } for (int i = 0; i < chunkSize; i++) { this.buffer.put((byte) str.charAt(offset + i)); } offset += chunkSize; len -= chunkSize; } } } private final void writeFullUTF(String str) throws IOException { int strlen = str.length(); if (strlen > 65535) { throw new UTFDataFormatException(); } { int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (remainingSpace >= ((strlen * 3) + 2)) { // we have plenty of room to do this with one pass directly into the buffer writeQuickFullUTF(str, strlen); return; } } int utfSize = 0; for (int i = 0; i < strlen; i++) { int c = str.charAt(i); if ((c >= 0x0001) && (c <= 0x007F)) { utfSize += 1; } else if (c > 0x07FF) { utfSize += 3; } else { utfSize += 2; } } if (utfSize > 65535) { throw new UTFDataFormatException(); } writeShort(utfSize); for (int i = 0; i < strlen; i++) { int c = str.charAt(i); if ((c >= 0x0001) && (c <= 0x007F)) { writeByte((byte) c); } else if (c > 0x07FF) { writeByte((byte) (0xE0 | ((c >> 12) & 0x0F))); writeByte((byte) (0x80 | ((c >> 6) & 0x3F))); writeByte((byte) (0x80 | ((c >> 0) & 0x3F))); } else { writeByte((byte) (0xC0 | ((c >> 6) & 0x1F))); writeByte((byte) (0x80 | ((c >> 0) & 0x3F))); } } } /** * Used when we know the max size will fit in the current buffer. */ private final void writeQuickFullUTF(String str, int strlen) throws IOException { int utfSizeIdx = this.buffer.position(); // skip bytes reserved for length this.buffer.position(utfSizeIdx + 2); for (int i = 0; i < strlen; i++) { int c = str.charAt(i); if ((c >= 0x0001) && (c <= 0x007F)) { this.buffer.put((byte) c); } else if (c > 0x07FF) { this.buffer.put((byte) (0xE0 | ((c >> 12) & 0x0F))); this.buffer.put((byte) (0x80 | ((c >> 6) & 0x3F))); this.buffer.put((byte) (0x80 | ((c >> 0) & 0x3F))); } else { this.buffer.put((byte) (0xC0 | ((c >> 6) & 0x1F))); this.buffer.put((byte) (0x80 | ((c >> 0) & 0x3F))); } } int utflen = this.buffer.position() - (utfSizeIdx + 2); if (utflen > 65535) { // act as if we wrote nothing to this buffer this.buffer.position(utfSizeIdx); throw new UTFDataFormatException(); } this.buffer.putShort(utfSizeIdx, (short) utflen); } /** * Attempt to fit v into the current buffer as a serialized byte array. This is done by reserving * 5 bytes for the length and then starting the serialization. If all the bytes fit then the * length is fixed up and we are done. If it doesn't fit then we need to serialize the remainder * to a temporary HeapDataOutputStream and then fix the length flush the first chunk and then send * the contents of the HeapDataOutputStream to this streamer. All of this is done to prevent an * extra copy when the serialized form will all fit into our current buffer. */ public final void writeAsSerializedByteArray(Object v) throws IOException { if (v instanceof HeapDataOutputStream) { HeapDataOutputStream other = (HeapDataOutputStream) v; InternalDataSerializer.writeArrayLength(other.size(), this); other.sendTo((ByteBufferWriter) this); other.rewind(); return; } if (this.overflowBuf != null) { this.overflowBuf.writeAsSerializedByteArray(v); return; } if (isOverflowMode()) { // we must have recursed which is now allowed to fix bug 38194 int remainingSpace = this.buffer.capacity() - this.buffer.position(); if (remainingSpace < 5) { // we don't even have room to write the length field so just create // the overflowBuf this.overflowBuf = new HeapDataOutputStream( this.buffer.capacity() - Connection.MSG_HEADER_BYTES, Version.CURRENT); this.overflowBuf.writeAsSerializedByteArray(v); return; } } else { ensureCapacity(5 + 1024); /* * need 5 bytes for length plus enough room for an 'average' small * object. I pulled 1024 as the average out of thin air. */ } int lengthPos = this.buffer.position(); this.buffer.position(lengthPos + 5); enableOverflowMode(); boolean finished = false; try { try { DataSerializer.writeObject(v, this); } catch (IOException e) { RuntimeException e2 = new IllegalArgumentException( LocalizedStrings.MsgStreamer_AN_EXCEPTION_WAS_THROWN_WHILE_SERIALIZING .toLocalizedString()); e2.initCause(e); throw e2; } int baLength = this.buffer.position() - (lengthPos + 5); HeapDataOutputStream overBuf = this.overflowBuf; if (overBuf != null) { baLength += overBuf.size(); } this.buffer.put(lengthPos, InternalDataSerializer.INT_ARRAY_LEN); this.buffer.putInt(lengthPos + 1, baLength); disableOverflowMode(); finished = true; if (overBuf != null && !isOverflowMode()) { overBuf.sendTo((ByteBufferWriter) this); } } finally { if (!finished) { // reset buffer and act as if we did nothing this.buffer.position(lengthPos); disableOverflowMode(); } } } }