/* * Licensed to the Apache Software Foundation (ASF) under one or more contributor license * agreements. See the NOTICE file distributed with this work for additional information regarding * copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. You may obtain a * copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express * or implied. See the License for the specific language governing permissions and limitations under * the License. */ package org.apache.geode.internal.concurrent; /* * CompactConcurrentHashSet2 is derived from the JSR 166 ConcurrentHashMap class version 1.43 * (current as of 27 March 2015). The modifications made for GemFire turn it into a Set instead of a * Map by removing the map's storage for values and removing the methods that are associated with * values. * * JSR 166 interest web site: http://gee.cs.oswego.edu/dl/concurrency-interest/ * * File download location: * http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jdk7/java/util/concurrent/ * CompactConcurrentHashSet2.java?revision=1.43 * * Original licensing notice: Written by Doug Lea with assistance from members of JCP JSR-166 Expert * Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ import java.io.ObjectStreamField; import java.io.Serializable; import java.lang.reflect.Field; import java.lang.reflect.ParameterizedType; import java.lang.reflect.Type; import java.util.AbstractSet; import java.util.Collection; import java.util.Enumeration; import java.util.Iterator; import java.util.NoSuchElementException; import java.util.Set; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.locks.LockSupport; import java.util.concurrent.locks.ReentrantLock; /** * <p> * This is the original javadoc describing ConcurrentHashMap. This class is actually a Set based on * Doug Lea's CHM implementation (see the source file for full attribution). * </p> * A hash map supporting full concurrency of retrievals and high expected concurrency for updates. * This class obeys the same functional specification as {@link java.util.HashMap}, and includes * versions of methods corresponding to each method of {@code HashMap}. However, even though all * operations are thread-safe, retrieval operations do <em>not</em> entail locking, and there is * <em>not</em> any support for locking the entire set in a way that prevents all access. This class * is fully interoperable with {@code HashMap} in programs that rely on its thread safety but not on * its synchronization details. * * * @since Geode 1.0 * @author Originally Doug Lea * @param <V> the type of values held in the set */ public class CompactConcurrentHashSet2<V> extends AbstractSet<V> implements Set<V>, Serializable { private static final long serialVersionUID = 7249069246763182397L; /* * Overview: * * The primary design goal of this hash table is to maintain concurrent readability (typically * method get(), but also iterators and related methods) while minimizing update contention. * Secondary goals are to keep space consumption about the same or better than java.util.HashMap, * and to support high initial insertion rates on an empty table by many threads. * * This map usually acts as a binned (bucketed) hash table. Each key-value mapping is held in a * Node. Most nodes are instances of the basic Node class with hash, key, value, and next fields. * However, various subclasses exist: TreeNodes are arranged in balanced trees, not lists. * TreeBins hold the roots of sets of TreeNodes. ForwardingNodes are placed at the heads of bins * during resizing. ReservationNodes are used as placeholders while establishing values in * computeIfAbsent and related methods. The types TreeBin, ForwardingNode, and ReservationNode do * not hold normal user keys, values, or hashes, and are readily distinguishable during search etc * because they have negative hash fields and null key and value fields. (These special nodes are * either uncommon or transient, so the impact of carrying around some unused fields is * insignificant.) * * The table is lazily initialized to a power-of-two size upon the first insertion. Each bin in * the table normally contains a list of Nodes (most often, the list has only zero or one Node). * Table accesses require volatile/atomic reads, writes, and CASes. Because there is no other way * to arrange this without adding further indirections, we use intrinsics (sun.misc.Unsafe) * operations. * * We use the top (sign) bit of Node hash fields for control purposes -- it is available anyway * because of addressing constraints. Nodes with negative hash fields are specially handled or * ignored in map methods. * * Insertion (via put or its variants) of the first node in an empty bin is performed by just * CASing it to the bin. This is by far the most common case for put operations under most * key/hash distributions. Other update operations (insert, delete, and replace) require locks. We * do not want to waste the space required to associate a distinct lock object with each bin, so * instead use the first node of a bin list itself as a lock. Locking support for these locks * relies on builtin "synchronized" monitors. * * Using the first node of a list as a lock does not by itself suffice though: When a node is * locked, any update must first validate that it is still the first node after locking it, and * retry if not. Because new nodes are always appended to lists, once a node is first in a bin, it * remains first until deleted or the bin becomes invalidated (upon resizing). * * The main disadvantage of per-bin locks is that other update operations on other nodes in a bin * list protected by the same lock can stall, for example when user equals() or mapping functions * take a long time. However, statistically, under random hash codes, this is not a common * problem. Ideally, the frequency of nodes in bins follows a Poisson distribution * (http://en.wikipedia.org/wiki/Poisson_distribution) with a parameter of about 0.5 on average, * given the resizing threshold of 0.75, although with a large variance because of resizing * granularity. Ignoring variance, the expected occurrences of list size k are (exp(-0.5) * * pow(0.5, k) / factorial(k)). The first values are: * * 0: 0.60653066 1: 0.30326533 2: 0.07581633 3: 0.01263606 4: 0.00157952 5: 0.00015795 6: * 0.00001316 7: 0.00000094 8: 0.00000006 more: less than 1 in ten million * * Lock contention probability for two threads accessing distinct elements is roughly 1 / (8 * * #elements) under random hashes. * * Actual hash code distributions encountered in practice sometimes deviate significantly from * uniform randomness. This includes the case when N > (1<<30), so some keys MUST collide. * Similarly for dumb or hostile usages in which multiple keys are designed to have identical hash * codes or ones that differs only in masked-out high bits. So we use a secondary strategy that * applies when the number of nodes in a bin exceeds a threshold. These TreeBins use a balanced * tree to hold nodes (a specialized form of red-black trees), bounding search time to O(log N). * Each search step in a TreeBin is at least twice as slow as in a regular list, but given that N * cannot exceed (1<<64) (before running out of addresses) this bounds search steps, lock hold * times, etc, to reasonable constants (roughly 100 nodes inspected per operation worst case) so * long as keys are Comparable (which is very common -- String, Long, etc). TreeBin nodes * (TreeNodes) also maintain the same "next" traversal pointers as regular nodes, so can be * traversed in iterators in the same way. * * The table is resized when occupancy exceeds a percentage threshold (nominally, 0.75, but see * below). Any thread noticing an overfull bin may assist in resizing after the initiating thread * allocates and sets up the replacement array. However, rather than stalling, these other threads * may proceed with insertions etc. The use of TreeBins shields us from the worst case effects of * overfilling while resizes are in progress. Resizing proceeds by transferring bins, one by one, * from the table to the next table. However, threads claim small blocks of indices to transfer * (via field transferIndex) before doing so, reducing contention. A generation stamp in field * sizeCtl ensures that resizings do not overlap. Because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move with a power of two offset. We * eliminate unnecessary node creation by catching cases where old nodes can be reused because * their next fields won't change. On average, only about one-sixth of them need cloning when a * table doubles. The nodes they replace will be garbage collectable as soon as they are no longer * referenced by any reader thread that may be in the midst of concurrently traversing table. Upon * transfer, the old table bin contains only a special forwarding node (with hash field "MOVED") * that contains the next table as its key. On encountering a forwarding node, access and update * operations restart, using the new table. * * Each bin transfer requires its bin lock, which can stall waiting for locks while resizing. * However, because other threads can join in and help resize rather than contend for locks, * average aggregate waits become shorter as resizing progresses. The transfer operation must also * ensure that all accessible bins in both the old and new table are usable by any traversal. This * is arranged in part by proceeding from the last bin (table.length - 1) up towards the first. * Upon seeing a forwarding node, traversals (see class Traverser) arrange to move to the new * table without revisiting nodes. To ensure that no intervening nodes are skipped even when moved * out of order, a stack (see class TableStack) is created on first encounter of a forwarding node * during a traversal, to maintain its place if later processing the current table. The need for * these save/restore mechanics is relatively rare, but when one forwarding node is encountered, * typically many more will be. So Traversers use a simple caching scheme to avoid creating so * many new TableStack nodes. (Thanks to Peter Levart for suggesting use of a stack here.) * * The traversal scheme also applies to partial traversals of ranges of bins (via an alternate * Traverser constructor) to support partitioned aggregate operations. Also, read-only operations * give up if ever forwarded to a null table, which provides support for shutdown-style clearing, * which is also not currently implemented. * * Lazy table initialization minimizes footprint until first use, and also avoids resizings when * the first operation is from a putAll, constructor with map argument, or deserialization. These * cases attempt to override the initial capacity settings, but harmlessly fail to take effect in * cases of races. * * The element count is maintained using a specialization of LongAdder. We need to incorporate a * specialization rather than just use a LongAdder in order to access implicit contention-sensing * that leads to creation of multiple CounterCells. The counter mechanics avoid contention on * updates but can encounter cache thrashing if read too frequently during concurrent access. To * avoid reading so often, resizing under contention is attempted only upon adding to a bin * already holding two or more nodes. Under uniform hash distributions, the probability of this * occurring at threshold is around 13%, meaning that only about 1 in 8 puts check threshold (and * after resizing, many fewer do so). * * TreeBins use a special form of comparison for search and related operations (which is the main * reason we cannot use existing collections such as TreeMaps). TreeBins contain Comparable * elements, but may contain others, as well as elements that are Comparable but not necessarily * Comparable for the same T, so we cannot invoke compareTo among them. To handle this, the tree * is ordered primarily by hash value, then by Comparable.compareTo order if applicable. On lookup * at a node, if elements are not comparable or compare as 0 then both left and right children may * need to be searched in the case of tied hash values. (This corresponds to the full list search * that would be necessary if all elements were non-Comparable and had tied hashes.) On insertion, * to keep a total ordering (or as close as is required here) across rebalancings, we compare * classes and identityHashCodes as tie-breakers. The red-black balancing code is updated from * pre-jdk-collections (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java) based in turn * on Cormen, Leiserson, and Rivest "Introduction to Algorithms" (CLR). * * TreeBins also require an additional locking mechanism. While list traversal is always possible * by readers even during updates, tree traversal is not, mainly because of tree-rotations that * may change the root node and/or its linkages. TreeBins include a simple read-write lock * mechanism parasitic on the main bin-synchronization strategy: Structural adjustments associated * with an insertion or removal are already bin-locked (and so cannot conflict with other writers) * but must wait for ongoing readers to finish. Since there can be only one such waiter, we use a * simple scheme using a single "waiter" field to block writers. However, readers need never * block. If the root lock is held, they proceed along the slow traversal path (via next-pointers) * until the lock becomes available or the list is exhausted, whichever comes first. These cases * are not fast, but maximize aggregate expected throughput. * * Maintaining API and serialization compatibility with previous versions of this class introduces * several oddities. Mainly: We leave untouched but unused constructor arguments refering to * concurrencyLevel. We accept a loadFactor constructor argument, but apply it only to initial * table capacity (which is the only time that we can guarantee to honor it.) We also declare an * unused "Segment" class that is instantiated in minimal form only when serializing. * * Also, solely for compatibility with previous versions of this class, it extends AbstractMap, * even though all of its methods are overridden, so it is just useless baggage. * * This file is organized to make things a little easier to follow while reading than they might * otherwise: First the main static declarations and utilities, then fields, then main public * methods (with a few factorings of multiple public methods into internal ones), then sizing * methods, trees, traversers, and bulk operations. */ /* ---------------- Constants -------------- */ /** * The largest possible table capacity. This value must be exactly 1<<30 to stay within Java array * allocation and indexing bounds for power of two table sizes, and is further required because * the top two bits of 32bit hash fields are used for control purposes. */ private static final int MAXIMUM_CAPACITY = 1 << 30; /** * The default initial table capacity. Must be a power of 2 (i.e., at least 1) and at most * MAXIMUM_CAPACITY. */ private static final int DEFAULT_CAPACITY = 16; /** * The largest possible (non-power of two) array size. Needed by toArray and related methods. */ static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * The default concurrency level for this table. Unused but defined for compatibility with * previous versions of this class. */ private static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The load factor for this table. Overrides of this value in constructors affect only the initial * table capacity. The actual floating point value isn't normally used -- it is simpler to use * expressions such as {@code n - (n >>> 2)} for the associated resizing threshold. */ private static final float LOAD_FACTOR = 0.75f; /** * The bin count threshold for using a tree rather than list for a bin. Bins are converted to * trees when adding an element to a bin with at least this many nodes. The value must be greater * than 2, and should be at least 8 to mesh with assumptions in tree removal about conversion back * to plain bins upon shrinkage. */ static final int TREEIFY_THRESHOLD = 8; /** * The bin count threshold for untreeifying a (split) bin during a resize operation. Should be * less than TREEIFY_THRESHOLD, and at most 6 to mesh with shrinkage detection under removal. */ static final int UNTREEIFY_THRESHOLD = 6; /** * The smallest table capacity for which bins may be treeified. (Otherwise the table is resized if * too many nodes in a bin.) The value should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts * between resizing and treeification thresholds. */ static final int MIN_TREEIFY_CAPACITY = 64; /** * Minimum number of rebinnings per transfer step. Ranges are subdivided to allow multiple resizer * threads. This value serves as a lower bound to avoid resizers encountering excessive memory * contention. The value should be at least DEFAULT_CAPACITY. */ private static final int MIN_TRANSFER_STRIDE = 16; /** * The number of bits used for generation stamp in sizeCtl. Must be at least 6 for 32bit arrays. */ private static int RESIZE_STAMP_BITS = 16; /** * The maximum number of threads that can help resize. Must fit in 32 - RESIZE_STAMP_BITS bits. */ private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; /** * The bit shift for recording size stamp in sizeCtl. */ private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; /* * Encodings for Node hash fields. See above for explanation. */ static final int MOVED = 0x8fffffff; // (-1) hash for forwarding nodes static final int TREEBIN = 0x80000000; // hash for roots of trees static final int RESERVED = 0x80000001; // hash for transient reservations static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash /** Number of CPUS, to place bounds on some sizings */ static final int NCPU = Runtime.getRuntime().availableProcessors(); /** For serialization compatibility. */ private static final ObjectStreamField[] serialPersistentFields = {new ObjectStreamField("segments", Segment[].class), new ObjectStreamField("segmentMask", Integer.TYPE), new ObjectStreamField("segmentShift", Integer.TYPE)}; /* ---------------- Nodes -------------- */ /** * Key-value entry. This class is never exported out as a user-mutable Map.Entry (i.e., one * supporting setValue; see MapEntry below), but can be used for read-only traversals used in bulk * tasks. Subclasses of Node with a negative hash field are special, and contain null keys and * values (but are never exported). Otherwise, keys and vals are never null. */ static class Node<K> { final int hash; final K key; Node<K> next; Node(int hash, K key, Node<K> next) { this.hash = hash; this.key = key; this.next = next; } public final K getKey() { return key; } public final int hashCode() { return key.hashCode(); } public final String toString() { return key.toString(); } public final boolean equals(Object o) { Object k, u; Node<?> e; return ((o instanceof Node) && ((k = (e = (Node<?>) o)) != null) && (k == key || k.equals(key))); } /** * Virtualized support for map.get(); overridden in subclasses. */ Node<K> find(int h, Object k) { Node<K> e = this; if (k != null) { do { K ek; if (e.hash == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; } while ((e = e.next) != null); } return null; } } /* ---------------- Static utilities -------------- */ /** * Spreads (XORs) higher bits of hash to lower and also forces top bit to 0. Because the table * uses power-of-two masking, sets of hashes that vary only in bits above the current mask will * always collide. (Among known examples are sets of Float keys holding consecutive whole numbers * in small tables.) So we apply a transform that spreads the impact of higher bits downward. * There is a tradeoff between speed, utility, and quality of bit-spreading. Because many common * sets of hashes are already reasonably distributed (so don't benefit from spreading), and * because we use trees to handle large sets of collisions in bins, we just XOR some shifted bits * in the cheapest possible way to reduce systematic lossage, as well as to incorporate impact of * the highest bits that would otherwise never be used in index calculations because of table * bounds. */ static final int spread(int h) { return (h ^ (h >>> 16)) & HASH_BITS; } /** * Returns a power of two table size for the given desired capacity. See Hackers Delight, sec 3.2 */ private static final int tableSizeFor(int c) { int n = c - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } /** * Returns x's Class if it is of the form "class C implements Comparable<C>", else null. */ static Class<?> comparableClassFor(Object x) { if (x instanceof Comparable) { Class<?> c; Type[] ts, as; Type t; ParameterizedType p; if ((c = x.getClass()) == String.class) // bypass checks return c; if ((ts = c.getGenericInterfaces()) != null) { for (int i = 0; i < ts.length; ++i) { if (((t = ts[i]) instanceof ParameterizedType) && ((p = (ParameterizedType) t).getRawType() == Comparable.class) && (as = p.getActualTypeArguments()) != null && as.length == 1 && as[0] == c) // type // arg // is c return c; } } } return null; } /** * Returns k.compareTo(x) if x matches kc (k's screened comparable class), else 0. */ @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable static int compareComparables(Class<?> kc, Object k, Object x) { return (x == null || x.getClass() != kc ? 0 : ((Comparable) k).compareTo(x)); } /* ---------------- Table element access -------------- */ /* * Volatile access methods are used for table elements as well as elements of in-progress next * table while resizing. All uses of the tab arguments must be null checked by callers. All * callers also paranoically precheck that tab's length is not zero (or an equivalent check), thus * ensuring that any index argument taking the form of a hash value anded with (length - 1) is a * valid index. Note that, to be correct wrt arbitrary concurrency errors by users, these checks * must operate on local variables, which accounts for some odd-looking inline assignments below. * Note that calls to setTabAt always occur within locked regions, and so do not need full * volatile semantics, but still require ordering to maintain concurrent readability. */ @SuppressWarnings("unchecked") static final <K> Node<K> tabAt(Node<K>[] tab, int i) { return (Node<K>) U.getObjectVolatile(tab, ((long) i << ASHIFT) + ABASE); } static final <K> boolean casTabAt(Node<K>[] tab, int i, Node<K> c, Node<K> v) { return U.compareAndSwapObject(tab, ((long) i << ASHIFT) + ABASE, c, v); } static final <K> void setTabAt(Node<K>[] tab, int i, Node<K> v) { U.putOrderedObject(tab, ((long) i << ASHIFT) + ABASE, v); } /* ---------------- Fields -------------- */ /** * The array of bins. Lazily initialized upon first insertion. Size is always a power of two. * Accessed directly by iterators. */ transient volatile Node<V>[] table; /** * The next table to use; non-null only while resizing. */ private transient volatile Node<V>[] nextTable; /** * Base counter value, used mainly when there is no contention, but also as a fallback during * table initialization races. Updated via CAS. */ private transient volatile long baseCount; /** * Table initialization and resizing control. When negative, the table is being initialized or * resized: -1 for initialization, else -(1 + the number of active resizing threads). Otherwise, * when table is null, holds the initial table size to use upon creation, or 0 for default. After * initialization, holds the next element count value upon which to resize the table. */ private transient volatile int sizeCtl; /** * The next table index (plus one) to split while resizing. */ private transient volatile int transferIndex; /** * Spinlock (locked via CAS) used when resizing and/or creating CounterCells. */ private transient volatile int cellsBusy; /** * Table of counter cells. When non-null, size is a power of 2. */ private transient volatile CounterCell[] counterCells; /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the default initial table size (16). */ public CompactConcurrentHashSet2() {} /** * Creates a new, empty map with an initial table size accommodating the specified number of * elements without the need to dynamically resize. * * @param initialCapacity The implementation performs internal sizing to accommodate this many * elements. * @throws IllegalArgumentException if the initial capacity of elements is negative */ public CompactConcurrentHashSet2(int initialCapacity) { if (initialCapacity < 0) throw new IllegalArgumentException(); int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); this.sizeCtl = cap; } /** * Creates a new map with the same mappings as the given map. * * @param m the map */ public CompactConcurrentHashSet2(Collection<? extends V> m) { this.sizeCtl = DEFAULT_CAPACITY; addAll(m); } /** * Creates a new, empty map with an initial table size based on the given number of elements * ({@code initialCapacity}) and initial table density ({@code loadFactor}). * * @param initialCapacity the initial capacity. The implementation performs internal sizing to * accommodate this many elements, given the specified load factor. * @param loadFactor the load factor (table density) for establishing the initial table size * @throws IllegalArgumentException if the initial capacity of elements is negative or the load * factor is nonpositive * * @since Geode 1.0 */ public CompactConcurrentHashSet2(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, 1); } /** * Creates a new, empty map with an initial table size based on the given number of elements * ({@code initialCapacity}), table density ({@code loadFactor}), and number of concurrently * updating threads ({@code concurrencyLevel}). * * @param initialCapacity the initial capacity. The implementation performs internal sizing to * accommodate this many elements, given the specified load factor. * @param loadFactor the load factor (table density) for establishing the initial table size * @param concurrencyLevel the estimated number of concurrently updating threads. The * implementation may use this value as a sizing hint. * @throws IllegalArgumentException if the initial capacity is negative or the load factor or * concurrencyLevel are nonpositive */ public CompactConcurrentHashSet2(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (initialCapacity < concurrencyLevel) // Use at least as many bins initialCapacity = concurrencyLevel; // as estimated threads long size = (long) (1.0 + (long) initialCapacity / loadFactor); int cap = (size >= (long) MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int) size); this.sizeCtl = cap; } // Original (since JDK1.2) Map methods /** * {@inheritDoc} */ public int size() { long n = sumCount(); return ((n < 0L) ? 0 : (n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) n); } /** * {@inheritDoc} */ public boolean isEmpty() { return sumCount() <= 0L; // ignore transient negative values } boolean _contains(Object key) { Node<V>[] tab; Node<V> e, p; int n, eh; V ek; if (key == null) { return false; } int h = spread(key.hashCode()); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) return true; } else if (eh < 0) return ((p = e.find(h, key)) != null); while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return true; } } return false; } @Override public boolean add(V value) { return putKey(value, false); } /** Implementation for add */ final boolean putKey(V key, boolean onlyIfAbsent) { if (key == null) throw new NullPointerException(); int hash = spread(key.hashCode()); int binCount = 0; for (Node<V>[] tab = table;;) { Node<V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { if (casTabAt(tab, i, null, new Node<V>(hash, key, null))) break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { boolean wasPresent = false; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<V> e = f;; ++binCount) { V ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { wasPresent = true; break; } Node<V> pred = e; if ((e = e.next) == null) { pred.next = new Node<V>(hash, key, null); break; } } } else if (f instanceof TreeBin) { Node<V> p; binCount = 2; if ((p = ((TreeBin<V>) f).putTreeVal(hash, key)) != null) { wasPresent = true; } } } } if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (wasPresent) return true; break; } } } addCount(1L, binCount); return false; } /** * Copies all of the mappings from the specified map to this one. These mappings replace any * mappings that this map had for any of the keys currently in the specified map. * * @param m mappings to be stored in this map */ public void addAll(Set<? extends V> m) { tryPresize(m.size()); Iterator<? extends V> it = m.iterator(); while (it.hasNext()) { putKey(it.next(), false); } } @Override public boolean remove(Object key) { return removeNode(key); } final boolean removeNode(Object key) { int hash = spread(key.hashCode()); for (Node<V>[] tab = table;;) { Node<V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null) break; else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { boolean wasPresent = false; boolean validated = false; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { validated = true; for (Node<V> e = f, pred = null;;) { V ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { wasPresent = true; if (pred != null) pred.next = e.next; else setTabAt(tab, i, e.next); break; } pred = e; if ((e = e.next) == null) break; } } else if (f instanceof TreeBin) { validated = true; TreeBin<V> t = (TreeBin<V>) f; TreeNode<V> r, p; if ((r = t.root) != null && (p = r.findTreeNode(hash, key, null)) != null) { wasPresent = true; if (t.removeTreeNode(p)) setTabAt(tab, i, untreeify(t.first)); } } } } if (validated) { if (wasPresent) { addCount(-1L, -1); return true; } break; } } } return false; } /** * Removes all of the mappings from this map. */ public void clear() { long delta = 0L; // negative number of deletions int i = 0; Node<V>[] tab = table; while (tab != null && i < tab.length) { int fh; Node<V> f = tabAt(tab, i); if (f == null) ++i; else if ((fh = f.hash) == MOVED) { tab = helpTransfer(tab, f); i = 0; // restart } else { synchronized (f) { if (tabAt(tab, i) == f) { Node<V> p = (fh >= 0 ? f : (f instanceof TreeBin) ? ((TreeBin<V>) f).first : null); while (p != null) { --delta; p = p.next; } setTabAt(tab, i++, null); } } } } if (delta != 0L) addCount(delta, -1); } // public int hashCode() { // int h = 0; // Node<V>[] t; // if ((t = table) != null) { // Traverser<V> it = new Traverser<V>(t, t.length, 0, t.length); // for (Node<V> p; (p = it.advance()) != null; ) // h += p.key.hashCode(); // } // return h; // } /** * Returns a string representation of this map. The string representation consists of a list of * key-value mappings (in no particular order) enclosed in braces (<code>{}</code>). Adjacent * mappings are separated by the characters <code>", "</code> (comma and space). Each key-value * mapping is rendered as the key followed by an equals sign (<code>=</code>) followed by the * associated value. * * @return a string representation of this map */ public String toString() { Node<V>[] t; int f = (t = table) == null ? 0 : t.length; Traverser<V> it = new Traverser<V>(t, f, 0, f); StringBuilder sb = new StringBuilder(); sb.append('{'); Node<V> p; if ((p = it.advance()) != null) { for (;;) { V k = p.key; sb.append(k == this ? "(this Set)" : k); if ((p = it.advance()) == null) break; sb.append(',').append(' '); } } return sb.append('}').toString(); } // public boolean equals(Object o) { // if (o != this) { // if (!(o instanceof Set)) // return false; // Set<?> m = (Set<?>) o; // Node<V>[] t; // int f = (t = table) == null ? 0 : t.length; // Traverser<V> it = new Traverser<V>(t, f, 0, f); // for (Node<V> p; (p = it.advance()) != null; ) { // if (!m.contains(p.key)) { // return false; // } // } // Iterator<?> itr = m.iterator(); // while (itr.hasNext()) { // if (!contains(itr.next())) { // return false; // } // } // } // return true; // } /** * Stripped-down version of helper class used in previous version, declared for the sake of * serialization compatibility */ static class Segment<K> extends ReentrantLock implements Serializable { private static final long serialVersionUID = 2249069246763182397L; final float loadFactor; Segment(float lf) { this.loadFactor = lf; } } /** * Saves the state of the {@code CompactConcurrentHashSet2} instance to a stream (i.e., serializes * it). * * @param s the stream * @serialData the key (Object) and value (Object) for each key-value mapping, followed by a null * pair. The key-value mappings are emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // For serialization compatibility // Emulate segment calculation from previous version of this class int sshift = 0; int ssize = 1; while (ssize < DEFAULT_CONCURRENCY_LEVEL) { ++sshift; ssize <<= 1; } int segmentShift = 32 - sshift; int segmentMask = ssize - 1; @SuppressWarnings("unchecked") Segment<V>[] segments = (Segment<V>[]) new Segment<?>[DEFAULT_CONCURRENCY_LEVEL]; for (int i = 0; i < segments.length; ++i) segments[i] = new Segment<V>(LOAD_FACTOR); java.io.ObjectOutputStream.PutField streamFields = s.putFields(); streamFields.put("segments", segments); streamFields.put("segmentShift", segmentShift); streamFields.put("segmentMask", segmentMask); s.writeFields(); Node<V>[] t; if ((t = table) != null) { Traverser<V> it = new Traverser<V>(t, t.length, 0, t.length); for (Node<V> p; (p = it.advance()) != null;) { s.writeObject(p.key); } } s.writeObject(null); s.writeObject(null); segments = null; // throw away } /** * Reconstitutes the instance from a stream (that is, deserializes it). * * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { /* * To improve performance in typical cases, we create nodes while reading, then place in table * once size is known. However, we must also validate uniqueness and deal with overpopulated * bins while doing so, which requires specialized versions of putVal mechanics. */ sizeCtl = -1; // force exclusion for table construction s.defaultReadObject(); long size = 0L; Node<V> p = null; for (;;) { @SuppressWarnings("unchecked") V k = (V) s.readObject(); if (k != null) { p = new Node<V>(spread(k.hashCode()), k, p); ++size; } else break; } if (size == 0L) sizeCtl = 0; else { int n; if (size >= (long) (MAXIMUM_CAPACITY >>> 1)) n = MAXIMUM_CAPACITY; else { int sz = (int) size; n = tableSizeFor(sz + (sz >>> 1) + 1); } @SuppressWarnings("unchecked") Node<V>[] tab = (Node<V>[]) new Node<?>[n]; int mask = n - 1; long added = 0L; while (p != null) { boolean insertAtFront; Node<V> next = p.next, first; int h = p.hash, j = h & mask; if ((first = tabAt(tab, j)) == null) insertAtFront = true; else { V k = p.key; if (first.hash < 0) { TreeBin<V> t = (TreeBin<V>) first; if (t.putTreeVal(h, k) == null) ++added; insertAtFront = false; } else { int binCount = 0; insertAtFront = true; Node<V> q; V qk; for (q = first; q != null; q = q.next) { if (q.hash == h && ((qk = q.key) == k || (qk != null && k.equals(qk)))) { insertAtFront = false; break; } ++binCount; } if (insertAtFront && binCount >= TREEIFY_THRESHOLD) { insertAtFront = false; ++added; p.next = first; TreeNode<V> hd = null, tl = null; for (q = p; q != null; q = q.next) { TreeNode<V> t = new TreeNode<V>(q.hash, q.key, null, null); if ((t.prev = tl) == null) hd = t; else tl.next = t; tl = t; } setTabAt(tab, j, new TreeBin<V>(hd)); } } } if (insertAtFront) { ++added; p.next = first; setTabAt(tab, j, p); } p = next; } table = tab; sizeCtl = n - (n >>> 2); baseCount = added; } } @Override public boolean contains(Object value) { return _contains(value); } @Override public Iterator<V> iterator() { Node<V>[] t; CompactConcurrentHashSet2<V> m = this; int f = (t = m.table) == null ? 0 : t.length; return new KeyIterator<V>(t, f, 0, f, m); } // CompactConcurrentHashSet2-only methods /** * Returns the number of mappings. This method should be used instead of {@link #size} because a * CompactConcurrentHashSet2 may contain more mappings than can be represented as an int. The * value returned is an estimate; the actual count may differ if there are concurrent insertions * or removals. * * @return the number of mappings * @since Geode 1.0 */ public long mappingCount() { long n = sumCount(); return (n < 0L) ? 0L : n; // ignore transient negative values } /* ---------------- Special Nodes -------------- */ /** * A node inserted at head of bins during transfer operations. */ static final class ForwardingNode<K> extends Node<K> { final Node<K>[] nextTable; ForwardingNode(Node<K>[] tab) { super(MOVED, null, null); this.nextTable = tab; } Node<K> find(int h, Object k) { Node<K> e; int n; Node<K>[] tab = nextTable; if (k != null && tab != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { do { int eh; K ek; if ((eh = e.hash) == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; if (eh < 0) return e.find(h, k); } while ((e = e.next) != null); } return null; } } /** * A place-holder node used in computeIfAbsent and compute */ static final class ReservationNode<K> extends Node<K> { ReservationNode() { super(RESERVED, null, null); } Node<K> find(int h, Object k) { return null; } } /* ---------------- Table Initialization and Resizing -------------- */ /** * Returns the stamp bits for resizing a table of size n. Must be negative when shifted left by * RESIZE_STAMP_SHIFT. */ static final int resizeStamp(int n) { return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1)); } /** * Initializes table, using the size recorded in sizeCtl. */ private final Node<V>[] initTable() { Node<V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { if ((sc = sizeCtl) < 0) Thread.yield(); // lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<V>[] nt = (Node<V>[]) new Node<?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; } /** * Adds to count, and if table is too small and not already resizing, initiates transfer. If * already resizing, helps perform transfer if work is available. Rechecks occupancy after a * transfer to see if another resize is already needed because resizings are lagging additions. * * @param x the count to add * @param check if <0, don't check resize, if <= 1 only check if uncontended */ private final void addCount(long x, int check) { CounterCell[] as; long b, s; if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterHashCode hc; CounterCell a; long v; int m; boolean uncontended = true; if ((hc = threadCounterHashCode.get()) == null || as == null || (m = as.length - 1) < 0 || (a = as[m & hc.code]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { fullAddCount(x, hc, uncontended); return; } if (check <= 1) return; s = sumCount(); } if (check >= 0) { Node<V>[] tab, nt; int n, sc; while (s >= (long) (sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } } /** * Helps transfer if a resize is in progress. */ final Node<V>[] helpTransfer(Node<V>[] tab, Node<V> f) { Node<V>[] nextTab; int sc; if (tab != null && (f instanceof ForwardingNode) && (nextTab = ((ForwardingNode<V>) f).nextTable) != null) { int rs = resizeStamp(tab.length); while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { transfer(tab, nextTab); break; } } return nextTab; } return table; } /** * Tries to presize table to accommodate the given number of elements. * * @param size number of elements (doesn't need to be perfectly accurate) */ private final void tryPresize(int size) { int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(size + (size >>> 1) + 1); int sc; while ((sc = sizeCtl) >= 0) { Node<V>[] tab = table; int n; if (tab == null || (n = tab.length) == 0) { n = (sc > c) ? sc : c; if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if (table == tab) { @SuppressWarnings("unchecked") Node<V>[] nt = (Node<V>[]) new Node<?>[n]; table = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } } } else if (c <= sc || n >= MAXIMUM_CAPACITY) break; else if (tab == table) { int rs = resizeStamp(n); if (sc < 0) { Node<V>[] nt; if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); } } } /** * Moves and/or copies the nodes in each bin to new table. See above for explanation. */ private final void transfer(Node<V>[] tab, Node<V>[] nextTab) { int n = tab.length, stride; if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) stride = MIN_TRANSFER_STRIDE; // subdivide range if (nextTab == null) { // initiating try { @SuppressWarnings("unchecked") Node<V>[] nt = (Node<V>[]) new Node<?>[n << 1]; nextTab = nt; } catch (Throwable ex) { // try to cope with OOME sizeCtl = Integer.MAX_VALUE; return; } nextTable = nextTab; transferIndex = n; } int nextn = nextTab.length; ForwardingNode<V> fwd = new ForwardingNode<V>(nextTab); boolean advance = true; boolean finishing = false; // to ensure sweep before committing nextTab for (int i = 0, bound = 0;;) { Node<V> f; int fh; while (advance) { int nextIndex, nextBound; if (--i >= bound || finishing) advance = false; else if ((nextIndex = transferIndex) <= 0) { i = -1; advance = false; } else if (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))) { bound = nextBound; i = nextIndex - 1; advance = false; } } if (i < 0 || i >= n || i + n >= nextn) { int sc; if (finishing) { nextTable = null; table = nextTab; sizeCtl = (n << 1) - (n >>> 1); return; } if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) return; finishing = advance = true; i = n; // recheck before commit } } else if ((f = tabAt(tab, i)) == null) advance = casTabAt(tab, i, null, fwd); else if ((fh = f.hash) == MOVED) advance = true; // already processed else { synchronized (f) { if (tabAt(tab, i) == f) { Node<V> ln, hn; if (fh >= 0) { int runBit = fh & n; Node<V> lastRun = f; for (Node<V> p = f.next; p != null; p = p.next) { int b = p.hash & n; if (b != runBit) { runBit = b; lastRun = p; } } if (runBit == 0) { ln = lastRun; hn = null; } else { hn = lastRun; ln = null; } for (Node<V> p = f; p != lastRun; p = p.next) { int ph = p.hash; V pk = p.key; if ((ph & n) == 0) ln = new Node<V>(ph, pk, ln); else hn = new Node<V>(ph, pk, hn); } setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } else if (f instanceof TreeBin) { TreeBin<V> t = (TreeBin<V>) f; TreeNode<V> lo = null, loTail = null; TreeNode<V> hi = null, hiTail = null; int lc = 0, hc = 0; for (Node<V> e = t.first; e != null; e = e.next) { int h = e.hash; TreeNode<V> p = new TreeNode<V>(h, e.key, null, null); if ((h & n) == 0) { if ((p.prev = loTail) == null) lo = p; else loTail.next = p; loTail = p; ++lc; } else { if ((p.prev = hiTail) == null) hi = p; else hiTail.next = p; hiTail = p; ++hc; } } ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : (hc != 0) ? new TreeBin<V>(lo) : t; hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : (lc != 0) ? new TreeBin<V>(hi) : t; setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } } } } } } /* ---------------- Conversion from/to TreeBins -------------- */ /** * Replaces all linked nodes in bin at given index unless table is too small, in which case * resizes instead. */ private final void treeifyBin(Node<V>[] tab, int index) { Node<V> b; int n, sc; if (tab != null) { if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { if (tabAt(tab, index) == b) { TreeNode<V> hd = null, tl = null; for (Node<V> e = b; e != null; e = e.next) { TreeNode<V> p = new TreeNode<V>(e.hash, e.key, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } setTabAt(tab, index, new TreeBin<V>(hd)); } } } } } /** * Returns a list on non-TreeNodes replacing those in given list. */ static <K> Node<K> untreeify(Node<K> b) { Node<K> hd = null, tl = null; for (Node<K> q = b; q != null; q = q.next) { Node<K> p = new Node<K>(q.hash, q.key, null); if (tl == null) hd = p; else tl.next = p; tl = p; } return hd; } /* ---------------- TreeNodes -------------- */ /** * Nodes for use in TreeBins */ static final class TreeNode<K> extends Node<K> { TreeNode<K> parent; // red-black tree links TreeNode<K> left; TreeNode<K> right; TreeNode<K> prev; // needed to unlink next upon deletion boolean red; TreeNode(int hash, K key, Node<K> next, TreeNode<K> parent) { super(hash, key, next); this.parent = parent; } Node<K> find(int h, Object k) { return findTreeNode(h, k, null); } /** * Returns the TreeNode (or null if not found) for the given key starting at given root. */ final TreeNode<K> findTreeNode(int h, Object k, Class<?> kc) { if (k != null) { TreeNode<K> p = this; do { int ph, dir; K pk; TreeNode<K> q; TreeNode<K> pl = p.left, pr = p.right; if ((ph = p.hash) > h) p = pl; else if (ph < h) p = pr; else if ((pk = p.key) == k || (pk != null && k.equals(pk))) return p; else if (pl == null) p = pr; else if (pr == null) p = pl; else if ((kc != null || (kc = comparableClassFor(k)) != null) && (dir = compareComparables(kc, k, pk)) != 0) p = (dir < 0) ? pl : pr; else if ((q = pr.findTreeNode(h, k, kc)) != null) return q; else p = pl; } while (p != null); } return null; } } /* ---------------- TreeBins -------------- */ /** * TreeNodes used at the heads of bins. TreeBins do not hold user keys or values, but instead * point to list of TreeNodes and their root. They also maintain a parasitic read-write lock * forcing writers (who hold bin lock) to wait for readers (who do not) to complete before tree * restructuring operations. */ static final class TreeBin<K> extends Node<K> { TreeNode<K> root; volatile TreeNode<K> first; volatile Thread waiter; volatile int lockState; // values for lockState static final int WRITER = 1; // set while holding write lock static final int WAITER = 2; // set when waiting for write lock static final int READER = 4; // increment value for setting read lock /** * Tie-breaking utility for ordering insertions when equal hashCodes and non-comparable. We * don't require a total order, just a consistent insertion rule to maintain equivalence across * rebalancings. Tie-breaking further than necessary simplifies testing a bit. */ static int tieBreakOrder(Object a, Object b) { int d; if (a == null || b == null || (d = a.getClass().getName().compareTo(b.getClass().getName())) == 0) d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1); return d; } /** * Creates bin with initial set of nodes headed by b. */ TreeBin(TreeNode<K> b) { super(TREEBIN, null, null); this.first = b; TreeNode<K> r = null; for (TreeNode<K> x = b, next; x != null; x = next) { next = (TreeNode<K>) x.next; x.left = x.right = null; if (r == null) { x.parent = null; x.red = false; r = x; } else { K k = x.key; int h = x.hash; Class<?> kc = null; for (TreeNode<K> p = r;;) { int dir, ph; K pk = p.key; if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) dir = tieBreakOrder(k, pk); TreeNode<K> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; r = balanceInsertion(r, x); break; } } } } this.root = r; assert checkInvariants(root); } /** * Acquires write lock for tree restructuring. */ private final void lockRoot() { if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) contendedLock(); // offload to separate method } /** * Releases write lock for tree restructuring. */ private final void unlockRoot() { lockState = 0; } /** * Possibly blocks awaiting root lock. */ private final void contendedLock() { boolean waiting = false; for (int s;;) { if (((s = lockState) & ~WAITER) == 0) { if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) { if (waiting) waiter = null; return; } } else if ((s & WAITER) == 0) { if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) { waiting = true; waiter = Thread.currentThread(); } } else if (waiting) LockSupport.park(this); } } /** * Returns matching node or null if none. Tries to search using tree comparisons from root, but * continues linear search when lock not available. */ final Node<K> find(int h, Object k) { if (k != null) { for (Node<K> e = first; e != null;) { int s; K ek; if (((s = lockState) & (WAITER | WRITER)) != 0) { if (e.hash == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; e = e.next; } else if (U.compareAndSwapInt(this, LOCKSTATE, s, s + READER)) { TreeNode<K> r, p; try { p = ((r = root) == null ? null : r.findTreeNode(h, k, null)); } finally { Thread w; int ls; do { } while (!U.compareAndSwapInt(this, LOCKSTATE, ls = lockState, ls - READER)); if (ls == (READER | WAITER) && (w = waiter) != null) LockSupport.unpark(w); } return p; } } } return null; } /** * Finds or adds a node. * * @return null if added */ /** * Finds or adds a node. * * @return null if added */ final TreeNode<K> putTreeVal(int h, K k) { Class<?> kc = null; boolean searched = false; for (TreeNode<K> p = root;;) { int dir, ph; K pk; if (p == null) { first = root = new TreeNode<K>(h, k, null, null); break; } else if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((pk = p.key) == k || (pk != null && k.equals(pk))) return p; else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) { if (!searched) { TreeNode<K> q, ch; searched = true; if (((ch = p.left) != null && (q = ch.findTreeNode(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.findTreeNode(h, k, kc)) != null)) return q; } dir = tieBreakOrder(k, pk); } TreeNode<K> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { TreeNode<K> x, f = first; first = x = new TreeNode<K>(h, k, f, xp); if (f != null) f.prev = x; if (dir <= 0) xp.left = x; else xp.right = x; if (!xp.red) x.red = true; else { lockRoot(); try { root = balanceInsertion(root, x); } finally { unlockRoot(); } } break; } } assert checkInvariants(root); return null; } /** * Removes the given node, that must be present before this call. This is messier than typical * red-black deletion code because we cannot swap the contents of an interior node with a leaf * successor that is pinned by "next" pointers that are accessible independently of lock. So * instead we swap the tree linkages. * * @return true if now too small, so should be untreeified */ final boolean removeTreeNode(TreeNode<K> p) { TreeNode<K> next = (TreeNode<K>) p.next; TreeNode<K> pred = p.prev; // unlink traversal pointers TreeNode<K> r, rl; if (pred == null) first = next; else pred.next = next; if (next != null) next.prev = pred; if (first == null) { root = null; return true; } if ((r = root) == null || r.right == null || // too small (rl = r.left) == null || rl.left == null) return true; lockRoot(); try { TreeNode<K> replacement; TreeNode<K> pl = p.left; TreeNode<K> pr = p.right; if (pl != null && pr != null) { TreeNode<K> s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<K> sr = s.right; TreeNode<K> pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { TreeNode<K> sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) sp.left = p; else sp.right = p; } if ((s.right = pr) != null) pr.parent = s; } p.left = null; if ((p.right = sr) != null) sr.parent = p; if ((s.left = pl) != null) pl.parent = s; if ((s.parent = pp) == null) r = s; else if (p == pp.left) pp.left = s; else pp.right = s; if (sr != null) replacement = sr; else replacement = p; } else if (pl != null) replacement = pl; else if (pr != null) replacement = pr; else replacement = p; if (replacement != p) { TreeNode<K> pp = replacement.parent = p.parent; if (pp == null) r = replacement; else if (p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } root = (p.red) ? r : balanceDeletion(r, replacement); if (p == replacement) { // detach pointers TreeNode<K> pp; if ((pp = p.parent) != null) { if (p == pp.left) pp.left = null; else if (p == pp.right) pp.right = null; p.parent = null; } } } finally { unlockRoot(); } assert checkInvariants(root); return false; } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR static <K> TreeNode<K> rotateLeft(TreeNode<K> root, TreeNode<K> p) { TreeNode<K> r, pp, rl; if (p != null && (r = p.right) != null) { if ((rl = p.right = r.left) != null) rl.parent = p; if ((pp = r.parent = p.parent) == null) (root = r).red = false; else if (pp.left == p) pp.left = r; else pp.right = r; r.left = p; p.parent = r; } return root; } static <K> TreeNode<K> rotateRight(TreeNode<K> root, TreeNode<K> p) { TreeNode<K> l, pp, lr; if (p != null && (l = p.left) != null) { if ((lr = p.left = l.right) != null) lr.parent = p; if ((pp = l.parent = p.parent) == null) (root = l).red = false; else if (pp.right == p) pp.right = l; else pp.left = l; l.right = p; p.parent = l; } return root; } static <K> TreeNode<K> balanceInsertion(TreeNode<K> root, TreeNode<K> x) { x.red = true; for (TreeNode<K> xp, xpp, xppl, xppr;;) { if ((xp = x.parent) == null) { x.red = false; return x; } else if (!xp.red || (xpp = xp.parent) == null) return root; if (xp == (xppl = xpp.left)) { if ((xppr = xpp.right) != null && xppr.red) { xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.right) { root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateRight(root, xpp); } } } } else { if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.left) { root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateLeft(root, xpp); } } } } } } static <K> TreeNode<K> balanceDeletion(TreeNode<K> root, TreeNode<K> x) { for (TreeNode<K> xp, xpl, xpr;;) { if (x == null || x == root) return root; else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) x = xp; else { TreeNode<K> sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { if (sl != null) sl.red = false; xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = (xp == null) ? false : xp.red; if ((sr = xpr.right) != null) sr.red = false; } if (xp != null) { xp.red = false; root = rotateLeft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) x = xp; else { TreeNode<K> sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { if (sr != null) sr.red = false; xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = (xp == null) ? false : xp.red; if ((sl = xpl.left) != null) sl.red = false; } if (xp != null) { xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } /** * Recursive invariant check */ static <K> boolean checkInvariants(TreeNode<K> t) { TreeNode<K> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode<K>) t.next; if (tb != null && tb.next != t) return false; if (tn != null && tn.prev != t) return false; if (tp != null && t != tp.left && t != tp.right) return false; if (tl != null && (tl.parent != t || tl.hash > t.hash)) return false; if (tr != null && (tr.parent != t || tr.hash < t.hash)) return false; if (t.red && tl != null && tl.red && tr != null && tr.red) return false; if (tl != null && !checkInvariants(tl)) return false; if (tr != null && !checkInvariants(tr)) return false; return true; } private static final sun.misc.Unsafe U; private static final long LOCKSTATE; static { try { Field f = sun.misc.Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); U = (sun.misc.Unsafe) f.get(null); Class<?> k = TreeBin.class; LOCKSTATE = U.objectFieldOffset(k.getDeclaredField("lockState")); } catch (Exception e) { throw new Error(e); } } } /* ----------------Table Traversal -------------- */ /** * Records the table, its length, and current traversal index for a traverser that must process a * region of a forwarded table before proceeding with current table. */ static final class TableStack<K> { int length; int index; Node<K>[] tab; TableStack<K> next; } /** * Encapsulates traversal for methods such as containsValue; also serves as a base class for other * iterators and spliterators. * * Method advance visits once each still-valid node that was reachable upon iterator construction. * It might miss some that were added to a bin after the bin was visited, which is OK wrt * consistency guarantees. Maintaining this property in the face of possible ongoing resizes * requires a fair amount of bookkeeping state that is difficult to optimize away amidst volatile * accesses. Even so, traversal maintains reasonable throughput. * * Normally, iteration proceeds bin-by-bin traversing lists. However, if the table has been * resized, then all future steps must traverse both the bin at the current index as well as at * (index + baseSize); and so on for further resizings. To paranoically cope with potential * sharing by users of iterators across threads, iteration terminates if a bounds checks fails for * a table read. */ static class Traverser<K> { Node<K>[] tab; // current table; updated if resized Node<K> next; // the next entry to use TableStack<K> stack, spare; // to save/restore on ForwardingNodes int index; // index of bin to use next int baseIndex; // current index of initial table int baseLimit; // index bound for initial table final int baseSize; // initial table size Traverser(Node<K>[] tab, int size, int index, int limit) { this.tab = tab; this.baseSize = size; this.baseIndex = this.index = index; this.baseLimit = limit; this.next = null; } /** * Advances if possible, returning next valid node, or null if none. */ final Node<K> advance() { Node<K> e; if ((e = next) != null) e = e.next; for (;;) { Node<K>[] t; int i, n; // must use locals in checks if (e != null) return next = e; if (baseIndex >= baseLimit || (t = tab) == null || (n = t.length) <= (i = index) || i < 0) return next = null; if ((e = tabAt(t, i)) != null && e.hash < 0) { if (e instanceof ForwardingNode) { tab = ((ForwardingNode<K>) e).nextTable; e = null; pushState(t, i, n); continue; } else if (e instanceof TreeBin) e = ((TreeBin<K>) e).first; else e = null; } if (stack != null) recoverState(n); else if ((index = i + baseSize) >= n) index = ++baseIndex; // visit upper slots if present } } /** * Saves traversal state upon encountering a forwarding node. */ private void pushState(Node<K>[] t, int i, int n) { TableStack<K> s = spare; // reuse if possible if (s != null) spare = s.next; else s = new TableStack<K>(); s.tab = t; s.length = n; s.index = i; s.next = stack; stack = s; } /** * Possibly pops traversal state. * * @param n length of current table */ private void recoverState(int n) { TableStack<K> s; int len; while ((s = stack) != null && (index += (len = s.length)) >= n) { n = len; index = s.index; tab = s.tab; s.tab = null; TableStack<K> next = s.next; s.next = spare; // save for reuse stack = next; spare = s; } if (s == null && (index += baseSize) >= n) index = ++baseIndex; } } /** * Base of key, value, and entry Iterators. Adds fields to Traverser to support iterator.remove. */ static class BaseIterator<K> extends Traverser<K> { final CompactConcurrentHashSet2<K> set; Node<K> lastReturned; BaseIterator(Node<K>[] tab, int size, int index, int limit, CompactConcurrentHashSet2<K> map) { super(tab, size, index, limit); this.set = map; advance(); } public final boolean hasNext() { return next != null; } public final boolean hasMoreElements() { return next != null; } public final void remove() { Node<K> p; if ((p = lastReturned) == null) throw new IllegalStateException(); lastReturned = null; set.removeNode(p.key); } } static final class KeyIterator<K> extends BaseIterator<K> implements Iterator<K>, Enumeration<K> { KeyIterator(Node<K>[] tab, int index, int size, int limit, CompactConcurrentHashSet2<K> map) { super(tab, index, size, limit, map); } public final K next() { Node<K> p; if ((p = next) == null) throw new NoSuchElementException(); K k = p.key; lastReturned = p; advance(); return k; } public final K nextElement() { return next(); } } /* ---------------- Counters -------------- */ // Adapted from LongAdder and Striped64. // See their internal docs for explanation. // A padded cell for distributing counts static final class CounterCell { volatile long p0, p1, p2, p3, p4, p5, p6; volatile long value; volatile long q0, q1, q2, q3, q4, q5, q6; CounterCell(long x) { value = x; } } /** * Holder for the thread-local hash code determining which CounterCell to use. The code is * initialized via the counterHashCodeGenerator, but may be moved upon collisions. */ static final class CounterHashCode { int code; } /** * Generates initial value for per-thread CounterHashCodes. */ static final AtomicInteger counterHashCodeGenerator = new AtomicInteger(); /** * Increment for counterHashCodeGenerator. See class ThreadLocal for explanation. */ static final int SEED_INCREMENT = 0x61c88647; /** * Per-thread counter hash codes. Shared across all instances. */ static final ThreadLocal<CounterHashCode> threadCounterHashCode = new ThreadLocal<CounterHashCode>(); final long sumCount() { CounterCell[] as = counterCells; CounterCell a; long sum = baseCount; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; } // See LongAdder version for explanation private final void fullAddCount(long x, CounterHashCode hc, boolean wasUncontended) { int h; if (hc == null) { hc = new CounterHashCode(); int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT); h = hc.code = (s == 0) ? 1 : s; // Avoid zero threadCounterHashCode.set(hc); } else h = hc.code; boolean collide = false; // True if last slot nonempty for (;;) { CounterCell[] as; CounterCell a; int n; long v; if ((as = counterCells) != null && (n = as.length) > 0) { if ((a = as[(n - 1) & h]) == null) { if (cellsBusy == 0) { // Try to attach new Cell CounterCell r = new CounterCell(x); // Optimistic create if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean created = false; try { // Recheck under lock CounterCell[] rs; int m, j; if ((rs = counterCells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) { rs[j] = r; created = true; } } finally { cellsBusy = 0; } if (created) break; continue; // Slot is now non-empty } } collide = false; } else if (!wasUncontended) // CAS already known to fail wasUncontended = true; // Continue after rehash else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) break; else if (counterCells != as || n >= NCPU) collide = false; // At max size or stale else if (!collide) collide = true; else if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { try { if (counterCells == as) {// Expand table unless stale CounterCell[] rs = new CounterCell[n << 1]; for (int i = 0; i < n; ++i) rs[i] = as[i]; counterCells = rs; } } finally { cellsBusy = 0; } collide = false; continue; // Retry with expanded table } h ^= h << 13; // Rehash h ^= h >>> 17; h ^= h << 5; } else if (cellsBusy == 0 && counterCells == as && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean init = false; try { // Initialize table if (counterCells == as) { CounterCell[] rs = new CounterCell[2]; rs[h & 1] = new CounterCell(x); counterCells = rs; init = true; } } finally { cellsBusy = 0; } if (init) break; } else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) break; // Fall back on using base } hc.code = h; // Record index for next time } // Unsafe mechanics private static final sun.misc.Unsafe U; private static final long SIZECTL; private static final long TRANSFERINDEX; private static final long BASECOUNT; private static final long CELLSBUSY; private static final long CELLVALUE; private static final long ABASE; private static final int ASHIFT; static { try { Field f = sun.misc.Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); U = (sun.misc.Unsafe) f.get(null); Class<?> k = CompactConcurrentHashSet2.class; SIZECTL = U.objectFieldOffset(k.getDeclaredField("sizeCtl")); TRANSFERINDEX = U.objectFieldOffset(k.getDeclaredField("transferIndex")); BASECOUNT = U.objectFieldOffset(k.getDeclaredField("baseCount")); CELLSBUSY = U.objectFieldOffset(k.getDeclaredField("cellsBusy")); Class<?> ck = CounterCell.class; CELLVALUE = U.objectFieldOffset(ck.getDeclaredField("value")); Class<?> ak = Node[].class; ABASE = U.arrayBaseOffset(ak); int scale = U.arrayIndexScale(ak); if ((scale & (scale - 1)) != 0) throw new Error("data type scale not a power of two"); ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); } catch (Exception e) { throw new Error(e); } // Reduce the risk of rare disastrous classloading in first call to // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773 Class<?> ensureLoaded = LockSupport.class; } }