/* * @(#)SHA5.java 1.6 06/10/10 * * Copyright 1990-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 only, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is * included at /legal/license.txt). * * You should have received a copy of the GNU General Public License * version 2 along with this work; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 or visit www.sun.com if you need additional * information or have any questions. */ package sun.security.provider; import java.security.*; import java.math.BigInteger; /** * This class implements the Secure Hash Algorithm SHA-512 developed by * the National Institute of Standards and Technology along with the * National Security Agency. * * <p>It implements java.security.MessageDigestSpi, and can be used * through Java Cryptography Architecture (JCA), as a pluggable * MessageDigest implementation. * * @version 1.6 10/10/06 * @author Valerie Peng */ public class SHA5 extends MessageDigestSpi implements Cloneable { private static final int LENGTH = 64; private static final long [] INITIAL_HASHES = { 0x6a09e667f3bcc908L, 0xbb67ae8584caa73bL, 0x3c6ef372fe94f82bL, 0xa54ff53a5f1d36f1L, 0x510e527fade682d1L, 0x9b05688c2b3e6c1fL, 0x1f83d9abfb41bd6bL, 0x5be0cd19137e2179L }; private static final int ITERATION = 80; // Constants for each round/iteration private static final long[] ROUND_CONSTS = { 0x428A2F98D728AE22L, 0x7137449123EF65CDL, 0xB5C0FBCFEC4D3B2FL, 0xE9B5DBA58189DBBCL, 0x3956C25BF348B538L, 0x59F111F1B605D019L, 0x923F82A4AF194F9BL, 0xAB1C5ED5DA6D8118L, 0xD807AA98A3030242L, 0x12835B0145706FBEL, 0x243185BE4EE4B28CL, 0x550C7DC3D5FFB4E2L, 0x72BE5D74F27B896FL, 0x80DEB1FE3B1696B1L, 0x9BDC06A725C71235L, 0xC19BF174CF692694L, 0xE49B69C19EF14AD2L, 0xEFBE4786384F25E3L, 0x0FC19DC68B8CD5B5L, 0x240CA1CC77AC9C65L, 0x2DE92C6F592B0275L, 0x4A7484AA6EA6E483L, 0x5CB0A9DCBD41FBD4L, 0x76F988DA831153B5L, 0x983E5152EE66DFABL, 0xA831C66D2DB43210L, 0xB00327C898FB213FL, 0xBF597FC7BEEF0EE4L, 0xC6E00BF33DA88FC2L, 0xD5A79147930AA725L, 0x06CA6351E003826FL, 0x142929670A0E6E70L, 0x27B70A8546D22FFCL, 0x2E1B21385C26C926L, 0x4D2C6DFC5AC42AEDL, 0x53380D139D95B3DFL, 0x650A73548BAF63DEL, 0x766A0ABB3C77B2A8L, 0x81C2C92E47EDAEE6L, 0x92722C851482353BL, 0xA2BFE8A14CF10364L, 0xA81A664BBC423001L, 0xC24B8B70D0F89791L, 0xC76C51A30654BE30L, 0xD192E819D6EF5218L, 0xD69906245565A910L, 0xF40E35855771202AL, 0x106AA07032BBD1B8L, 0x19A4C116B8D2D0C8L, 0x1E376C085141AB53L, 0x2748774CDF8EEB99L, 0x34B0BCB5E19B48A8L, 0x391C0CB3C5C95A63L, 0x4ED8AA4AE3418ACBL, 0x5B9CCA4F7763E373L, 0x682E6FF3D6B2B8A3L, 0x748F82EE5DEFB2FCL, 0x78A5636F43172F60L, 0x84C87814A1F0AB72L, 0x8CC702081A6439ECL, 0x90BEFFFA23631E28L, 0xA4506CEBDE82BDE9L, 0xBEF9A3F7B2C67915L, 0xC67178F2E372532BL, 0xCA273ECEEA26619CL, 0xD186B8C721C0C207L, 0xEADA7DD6CDE0EB1EL, 0xF57D4F7FEE6ED178L, 0x06F067AA72176FBAL, 0x0A637DC5A2C898A6L, 0x113F9804BEF90DAEL, 0x1B710B35131C471BL, 0x28DB77F523047D84L, 0x32CAAB7B40C72493L, 0x3C9EBE0A15C9BEBCL, 0x431D67C49C100D4CL, 0x4CC5D4BECB3E42B6L, 0x597F299CFC657E2AL, 0x5FCB6FAB3AD6FAECL, 0x6C44198C4A475817L }; private final long COUNT_MASK = 127; // block size - 1 private long W[] = new long[ITERATION]; private long count = 0; private long AA, BB, CC, DD, EE, FF, GG, HH; /** * logical function ch(x,y,z) as defined in spec: * @return (x and y) xor ((complement x) and z) * @param x long * @param y long * @param z long */ private static long lf_ch(long x, long y, long z) { return (x & y) ^ ((~x) & z); } /** * logical function maj(x,y,z) as defined in spec: * @return (x and y) xor (x and z) xor (y and z) * @param x long * @param y long * @param z long */ private static long lf_maj(long x, long y, long z) { return (x & y) ^ (x & z) ^ (y & z); } /** * logical function R(x,s) - right shift * @return x right shift for s times * @param x long * @param s int */ private static long lf_R(long x, int s) { return (x >>> s); } /** * logical function S(x,s) - right rotation * @return x circular right shift for s times * @param x long * @param s int */ private static long lf_S(long x, int s) { return (x >>> s) | (x << (64 - s)); } /** * logical function sigma0(x) - xor of results of right rotations * @return S(x,28) xor S(x,34) xor S(x,39) * @param x long */ private static long lf_sigma0(long x) { return lf_S(x, 28) ^ lf_S(x, 34) ^ lf_S(x, 39); } /** * logical function sigma1(x) - xor of results of right rotations * @return S(x,14) xor S(x,18) xor S(x,41) * @param x long */ private static long lf_sigma1(long x) { return lf_S(x, 14) ^ lf_S(x, 18) ^ lf_S(x, 41); } /** * logical function delta0(x) - xor of results of right shifts/rotations * @return long * @param x long */ private static long lf_delta0(long x) { return lf_S(x, 1) ^ lf_S(x, 8) ^ lf_R(x, 7); } /** * logical function delta1(x) - xor of results of right shifts/rotations * @return long * @param x long */ private static long lf_delta1(long x) { return lf_S(x, 19) ^ lf_S(x, 61) ^ lf_R(x, 6); } /** * Creates a SHA5 object with state (for cloning) */ SHA5(SHA5 sha) { this(); System.arraycopy(sha.W, 0, this.W, 0, W.length); this.count = sha.count; this.AA = sha.AA; this.BB = sha.BB; this.CC = sha.CC; this.DD = sha.DD; this.EE = sha.EE; this.FF = sha.FF; this.GG = sha.GG; this.HH = sha.HH; } /** * Creates a new SHA object. */ public SHA5() { init(); } /** * @return the length of the digest in bytes */ protected int engineGetDigestLength() { return (LENGTH); } /** * Update a byte. * * @param b the byte */ protected void engineUpdate(byte b) { update((int)b); } private void update(int b) { int word; // index inside this block, i.e. from 0 to 15. int offset; //offset of this byte inside the word /* compute word index within the block and bit offset within the word. block size is 128 bytes with word size is 8 bytes. offset is in terms of bits */ word = (int) (count & COUNT_MASK) >>> 3; offset = (int) (~count & 7) << 3; // clear the byte inside W[word] and then 'or' it with b's byte value W[word] = (W[word] & ~(0xffL << offset)) | ((b & 0xffL) << offset); count++; /* If this is the last byte of a block, compute the partial hash */ if ((count & COUNT_MASK) == 0) { computeBlock(); } } /** * Update a buffer. * * @param b the data to be updated. * @param off the start offset in the data * @param len the number of bytes to be updated. */ protected void engineUpdate(byte b[], int off, int len) { int word; int offset; if ((off < 0) || (len < 0) || (off + len > b.length)) throw new ArrayIndexOutOfBoundsException(); // Use single writes until integer aligned while ((len > 0) && (count & 7) != 0) { engineUpdate(b[off]); off++; len--; } /* Assemble groups of 8 bytes to be inserted in long array */ while (len >= 8) { word = (int) (count & COUNT_MASK) >> 3; W[word] = ((b[off] & 0xffL) << 56) | ((b[off+1] & 0xffL) << 48) | ((b[off+2] & 0xffL) << 40) | ((b[off+3] & 0xffL) << 32) | ((b[off+4] & 0xffL) << 24) | ((b[off+5] & 0xffL) << 16) | ((b[off+6] & 0xffL) << 8) | ((b[off+7] & 0xffL) ); count += 8; if ((count & COUNT_MASK) == 0) { computeBlock(); } len -= 8; off += 8; } /* Use single writes for last few bytes */ while (len > 0) { engineUpdate(b[off++]); len--; } } /** * Resets the buffers and hash value to start a new hash. */ void init() { setInitialHash(INITIAL_HASHES); for (int i = 0; i < ITERATION; i++) W[i] = 0; count = 0; } void setInitialHash(long[] values) { AA = values[0]; BB = values[1]; CC = values[2]; DD = values[3]; EE = values[4]; FF = values[5]; GG = values[6]; HH = values[7]; } /** * Resets the buffers and hash value to start a new hash. */ protected void engineReset() { init(); } /** * Computes the final hash and returns the final value as a * byte array. The object is reset to be ready for further * use, as specified in java.security.MessageDigest javadoc * specification. */ protected byte[] engineDigest() { byte hashvalue[] = new byte[LENGTH]; try { int outLen = engineDigest(hashvalue, 0, hashvalue.length); } catch (DigestException e) { throw new InternalError(""); } return hashvalue; } /** * Computes the final hash and places the final value in the * specified array. The object is reset to be ready for further * use, as specified in java.security.MessageDigest javadoc * specification. * @param hashvalue buffer to hold the digest * @param offset offset for storing the digest * @param len length of the buffer * @return length of the digest in bytes */ protected int engineDigest(byte[] hashvalue, int offset, int len) throws DigestException { if (len < LENGTH) { throw new DigestException("partial digests not returned"); } if (hashvalue.length - offset < LENGTH) { throw new DigestException("output buffer too small " + "to store the digest"); } performDigest(hashvalue, offset, LENGTH); return LENGTH; } void performDigest(byte[] hashvalue, int offset, int resultLength) throws DigestException { /* The input length in bits before padding occurs */ long inputLength = count << 3; update(0x80); /* Pad with zeros until overall length is a multiple of 896 */ while ((int)(count & COUNT_MASK) != 112) { update(0); } W[14] = 0; W[15] = inputLength; count += 16; computeBlock(); // Copy out the result switch (resultLength) { case 64: hashvalue[offset +63] = (byte)(HH >>> 0); hashvalue[offset +62] = (byte)(HH >>> 8); hashvalue[offset +61] = (byte)(HH >>> 16); hashvalue[offset +60] = (byte)(HH >>> 24); hashvalue[offset +59] = (byte)(HH >>> 32); hashvalue[offset +58] = (byte)(HH >>> 40); hashvalue[offset +57] = (byte)(HH >>> 48); hashvalue[offset +56] = (byte)(HH >>> 56); hashvalue[offset +55] = (byte)(GG >>> 0); hashvalue[offset +54] = (byte)(GG >>> 8); hashvalue[offset +53] = (byte)(GG >>> 16); hashvalue[offset +52] = (byte)(GG >>> 24); hashvalue[offset +51] = (byte)(GG >>> 32); hashvalue[offset +50] = (byte)(GG >>> 40); hashvalue[offset +49] = (byte)(GG >>> 48); hashvalue[offset +48] = (byte)(GG >>> 56); case 48: hashvalue[offset +47] = (byte)(FF >>> 0); hashvalue[offset +46] = (byte)(FF >>> 8); hashvalue[offset +45] = (byte)(FF >>> 16); hashvalue[offset +44] = (byte)(FF >>> 24); hashvalue[offset +43] = (byte)(FF >>> 32); hashvalue[offset +42] = (byte)(FF >>> 40); hashvalue[offset +41] = (byte)(FF >>> 48); hashvalue[offset +40] = (byte)(FF >>> 56); hashvalue[offset +39] = (byte)(EE >>> 0); hashvalue[offset +38] = (byte)(EE >>> 8); hashvalue[offset +37] = (byte)(EE >>> 16); hashvalue[offset +36] = (byte)(EE >>> 24); hashvalue[offset +35] = (byte)(EE >>> 32); hashvalue[offset +34] = (byte)(EE >>> 40); hashvalue[offset +33] = (byte)(EE >>> 48); hashvalue[offset +32] = (byte)(EE >>> 56); hashvalue[offset +31] = (byte)(DD >>> 0); hashvalue[offset +30] = (byte)(DD >>> 8); hashvalue[offset +29] = (byte)(DD >>> 16); hashvalue[offset +28] = (byte)(DD >>> 24); hashvalue[offset +27] = (byte)(DD >>> 32); hashvalue[offset +26] = (byte)(DD >>> 40); hashvalue[offset +25] = (byte)(DD >>> 48); hashvalue[offset +24] = (byte)(DD >>> 56); hashvalue[offset +23] = (byte)(CC >>> 0); hashvalue[offset +22] = (byte)(CC >>> 8); hashvalue[offset +21] = (byte)(CC >>> 16); hashvalue[offset +20] = (byte)(CC >>> 24); hashvalue[offset +19] = (byte)(CC >>> 32); hashvalue[offset +18] = (byte)(CC >>> 40); hashvalue[offset +17] = (byte)(CC >>> 48); hashvalue[offset +16] = (byte)(CC >>> 56); hashvalue[offset +15] = (byte)(BB >>> 0); hashvalue[offset +14] = (byte)(BB >>> 8); hashvalue[offset +13] = (byte)(BB >>> 16); hashvalue[offset +12] = (byte)(BB >>> 24); hashvalue[offset +11] = (byte)(BB >>> 32); hashvalue[offset +10] = (byte)(BB >>> 40); hashvalue[offset + 9] = (byte)(BB >>> 48); hashvalue[offset + 8] = (byte)(BB >>> 56); hashvalue[offset + 7] = (byte)(AA >>> 0); hashvalue[offset + 6] = (byte)(AA >>> 8); hashvalue[offset + 5] = (byte)(AA >>> 16); hashvalue[offset + 4] = (byte)(AA >>> 24); hashvalue[offset + 3] = (byte)(AA >>> 32); hashvalue[offset + 2] = (byte)(AA >>> 40); hashvalue[offset + 1] = (byte)(AA >>> 48); hashvalue[offset + 0] = (byte)(AA >>> 56); break; default: throw new DigestException("Unsupported Digest Length!"); } engineReset(); } /** * Compute the hash for the current block. * * This is in the same vein as Peter Gutmann's algorithm listed in * the back of Applied Cryptography, Compact implementation of * "old" NIST Secure Hash Algorithm. * */ private void computeBlock() { long T1, T2, a, b, c, d, e, f, g, h; // The first 16 longs are from the byte stream, compute the rest of // the W[]'s for (int t = 16; t < ITERATION; t++) { W[t] = lf_delta1(W[t-2]) + W[t-7] + lf_delta0(W[t-15]) + W[t-16]; } a = AA; b = BB; c = CC; d = DD; e = EE; f = FF; g = GG; h = HH; for (int i = 0; i < ITERATION; i++) { T1 = h + lf_sigma1(e) + lf_ch(e,f,g) + ROUND_CONSTS[i] + W[i]; T2 = lf_sigma0(a) + lf_maj(a,b,c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } AA += a; BB += b; CC += c; DD += d; EE += e; FF += f; GG += g; HH += h; } /* * Clones this object. */ public Object clone() { SHA5 that = null; that = new SHA5(this); return that; } }