/* * * @(#)Utility.java 1.17 06/10/10 * * Portions Copyright 2000-2008 Sun Microsystems, Inc. All Rights * Reserved. Use is subject to license terms. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 only, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is * included at /legal/license.txt). * * You should have received a copy of the GNU General Public License * version 2 along with this work; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 or visit www.sun.com if you need additional * information or have any questions. */ /* * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved * * The original version of this source code and documentation * is copyrighted and owned by Taligent, Inc., a wholly-owned * subsidiary of IBM. These materials are provided under terms * of a License Agreement between Taligent and Sun. This technology * is protected by multiple US and International patents. * * This notice and attribution to Taligent may not be removed. * Taligent is a registered trademark of Taligent, Inc. * */ package sun.text; public final class Utility { /** * Convenience utility to compare two Object[]s. * Ought to be in System */ public final static boolean arrayEquals(Object[] source, Object target) { if (source == null) return (target == null); if (!(target instanceof Object[])) return false; Object[] targ = (Object[]) target; return (source.length == targ.length && arrayRegionMatches(source, 0, targ, 0, source.length)); } /** * Convenience utility to compare two int[]s * Ought to be in System */ public final static boolean arrayEquals(int[] source, Object target) { if (source == null) return (target == null); if (!(target instanceof int[])) return false; int[] targ = (int[]) target; return (source.length == targ.length && arrayRegionMatches(source, 0, targ, 0, source.length)); } /** * Convenience utility to compare two double[]s * Ought to be in System */ public final static boolean arrayEquals(double[] source, Object target) { if (source == null) return (target == null); if (!(target instanceof double[])) return false; double[] targ = (double[]) target; return (source.length == targ.length && arrayRegionMatches(source, 0, targ, 0, source.length)); } /** * Convenience utility to compare two Object[]s * Ought to be in System */ public final static boolean arrayEquals(Object source, Object target) { if (source == null) return (target == null); // for some reason, the correct arrayEquals is not being called // so do it by hand for now. if (source instanceof Object[]) return(arrayEquals((Object[]) source,target)); if (source instanceof int[]) return(arrayEquals((int[]) source,target)); if (source instanceof double[]) return(arrayEquals((double[]) source,target)); return source.equals(target); } /** * Convenience utility to compare two Object[]s * Ought to be in System. * @param len the length to compare. * The start indices and start+len must be valid. */ public final static boolean arrayRegionMatches(Object[] source, int sourceStart, Object[] target, int targetStart, int len) { int sourceEnd = sourceStart + len; int delta = targetStart - sourceStart; for (int i = sourceStart; i < sourceEnd; i++) { if (!arrayEquals(source[i],target[i + delta])) return false; } return true; } /** * Convenience utility to compare two int[]s. * @param len the length to compare. * The start indices and start+len must be valid. * Ought to be in System */ public final static boolean arrayRegionMatches(int[] source, int sourceStart, int[] target, int targetStart, int len) { int sourceEnd = sourceStart + len; int delta = targetStart - sourceStart; for (int i = sourceStart; i < sourceEnd; i++) { if (source[i] != target[i + delta]) return false; } return true; } /** * Convenience utility to compare two arrays of doubles. * @param len the length to compare. * The start indices and start+len must be valid. * Ought to be in System */ public final static boolean arrayRegionMatches(double[] source, int sourceStart, double[] target, int targetStart, int len) { int sourceEnd = sourceStart + len; int delta = targetStart - sourceStart; for (int i = sourceStart; i < sourceEnd; i++) { if (source[i] != target[i + delta]) return false; } return true; } /** * Convenience utility. Does null checks on objects, then calls equals. */ public final static boolean objectEquals(Object source, Object target) { if (source == null) return (target == null); else return source.equals(target); } /** * The ESCAPE character is used during run-length encoding. It signals * a run of identical chars. */ static final char ESCAPE = '\uA5A5'; /** * The ESCAPE_BYTE character is used during run-length encoding. It signals * a run of identical bytes. */ static final byte ESCAPE_BYTE = (byte)0xA5; /** * Construct a string representing a short array. Use run-length encoding. * A character represents itself, unless it is the ESCAPE character. Then * the following notations are possible: * ESCAPE ESCAPE ESCAPE literal * ESCAPE n c n instances of character c * Since an encoded run occupies 3 characters, we only encode runs of 4 or * more characters. Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF. * If we encounter a run where n == ESCAPE, we represent this as: * c ESCAPE n-1 c * The ESCAPE value is chosen so as not to collide with commonly * seen values. */ public static final String arrayToRLEString(short[] a) { StringBuffer buffer = new StringBuffer(); // for (int i=0; i<a.length; ++i) buffer.append((char) a[i]); buffer.append((char) (a.length >> 16)); buffer.append((char) a.length); short runValue = a[0]; int runLength = 1; for (int i=1; i<a.length; ++i) { short s = a[i]; if (s == runValue && runLength < 0xFFFF) { ++runLength; } else { encodeRun(buffer, runValue, runLength); runValue = s; runLength = 1; } } encodeRun(buffer, runValue, runLength); return buffer.toString(); } /** * Construct a string representing a byte array. Use run-length encoding. * Two bytes are packed into a single char, with a single extra zero byte at * the end if needed. A byte represents itself, unless it is the * ESCAPE_BYTE. Then the following notations are possible: * ESCAPE_BYTE ESCAPE_BYTE ESCAPE_BYTE literal * ESCAPE_BYTE n b n instances of byte b * Since an encoded run occupies 3 bytes, we only encode runs of 4 or * more bytes. Thus we have n > 0 and n != ESCAPE_BYTE and n <= 0xFF. * If we encounter a run where n == ESCAPE_BYTE, we represent this as: * b ESCAPE_BYTE n-1 b * The ESCAPE_BYTE value is chosen so as not to collide with commonly * seen values. */ public static final String arrayToRLEString(byte[] a) { StringBuffer buffer = new StringBuffer(); buffer.append((char) (a.length >> 16)); buffer.append((char) a.length); byte runValue = a[0]; int runLength = 1; byte[] state = new byte[2]; for (int i=1; i<a.length; ++i) { byte b = a[i]; if (b == runValue && runLength < 0xFF) { ++runLength; } else { encodeRun(buffer, runValue, runLength, state); runValue = b; runLength = 1; } } encodeRun(buffer, runValue, runLength, state); // We must save the final byte, if there is one, by padding // an extra zero. if (state[0] != 0) { appendEncodedByte(buffer, (byte)0, state); } return buffer.toString(); } /** * Construct a string representing a char array. Use run-length encoding. * A character represents itself, unless it is the ESCAPE character. Then * the following notations are possible: * ESCAPE ESCAPE ESCAPE literal * ESCAPE n c n instances of character c * Since an encoded run occupies 3 characters, we only encode runs of 4 or * more characters. Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF. * If we encounter a run where n == ESCAPE, we represent this as: * c ESCAPE n-1 c * The ESCAPE value is chosen so as not to collide with commonly * seen values. */ public static final String arrayToRLEString(char[] a) { StringBuffer buffer = new StringBuffer(); buffer.append((char) (a.length >> 16)); buffer.append((char) a.length); char runValue = a[0]; int runLength = 1; for (int i=1; i<a.length; ++i) { char s = a[i]; if (s == runValue && runLength < 0xFFFF) ++runLength; else { encodeRun(buffer, (short)runValue, runLength); runValue = s; runLength = 1; } } encodeRun(buffer, (short)runValue, runLength); return buffer.toString(); } /** * Construct a string representing an int array. Use run-length encoding. * A character represents itself, unless it is the ESCAPE character. Then * the following notations are possible: * ESCAPE ESCAPE ESCAPE literal * ESCAPE n c n instances of character c * Since an encoded run occupies 3 characters, we only encode runs of 4 or * more characters. Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF. * If we encounter a run where n == ESCAPE, we represent this as: * c ESCAPE n-1 c * The ESCAPE value is chosen so as not to collide with commonly * seen values. */ public static final String arrayToRLEString(int[] a) { StringBuffer buffer = new StringBuffer(); appendInt(buffer, a.length); int runValue = a[0]; int runLength = 1; for (int i=1; i<a.length; ++i) { int s = a[i]; if (s == runValue && runLength < 0xFFFF) { ++runLength; } else { encodeRun(buffer, runValue, runLength); runValue = s; runLength = 1; } } encodeRun(buffer, runValue, runLength); return buffer.toString(); } /** * Encode a run, possibly a degenerate run (of < 4 values). * @param length The length of the run; must be > 0 && <= 0xFFFF. */ private static final void encodeRun(StringBuffer buffer, short value, int length) { if (length < 4) { for (int j=0; j<length; ++j) { if (value == (int) ESCAPE) { buffer.append(ESCAPE); } buffer.append((char) value); } } else { if (length == (int) ESCAPE) { if (value == (int) ESCAPE) { buffer.append(ESCAPE); } buffer.append((char) value); --length; } buffer.append(ESCAPE); buffer.append((char) length); buffer.append((char) value); // Don't need to escape this value } } /** * Encode a run, possibly a degenerate run (of < 4 values). * @param length The length of the run; must be > 0 && <= 0xFF. */ private static final void encodeRun(StringBuffer buffer, byte value, int length, byte[] state) { if (length < 4) { for (int j=0; j<length; ++j) { if (value == ESCAPE_BYTE) appendEncodedByte(buffer, ESCAPE_BYTE, state); appendEncodedByte(buffer, value, state); } } else { if (length == ESCAPE_BYTE) { if (value == ESCAPE_BYTE) { appendEncodedByte(buffer, ESCAPE_BYTE, state); } appendEncodedByte(buffer, value, state); --length; } appendEncodedByte(buffer, ESCAPE_BYTE, state); appendEncodedByte(buffer, (byte)length, state); appendEncodedByte(buffer, value, state); // Don't need to escape this value } } /** * Encode a run, possibly a degenerate run (of < 4 values). * @param length The length of the run; must be > 0 && <= 0xFFFF. */ private static final void encodeRun(StringBuffer buffer, int value, int length) { if (length < 4) { for (int j=0; j<length; ++j) { if (value == ESCAPE) { appendInt(buffer, value); } appendInt(buffer, value); } } else { if (length == (int) ESCAPE) { if (value == (int) ESCAPE) { appendInt(buffer, ESCAPE); } appendInt(buffer, value); --length; } appendInt(buffer, ESCAPE); appendInt(buffer, length); appendInt(buffer, value); // Don't need to escape this value } } private static final void appendInt(StringBuffer buffer, int value) { buffer.append((char)(value >>> 16)); buffer.append((char)(value & 0xFFFF)); } /** * Append a byte to the given StringBuffer, packing two bytes into each * character. The state parameter maintains intermediary data between * calls. * @param state A two-element array, with state[0] == 0 if this is the * first byte of a pair, or state[0] != 0 if this is the second byte * of a pair, in which case state[1] is the first byte. */ private static final void appendEncodedByte(StringBuffer buffer, byte value, byte[] state) { if (state[0] != 0) { char c = (char) ((state[1] << 8) | (((int) value) & 0xFF)); buffer.append(c); state[0] = 0; } else { state[0] = 1; state[1] = value; } } /** * Construct an array of shorts from a run-length encoded string. */ public static final short[] RLEStringToShortArray(String s) { int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1)); short[] array = new short[length]; int ai = 0; for (int i=2; i<s.length(); ++i) { char c = s.charAt(i); if (c == ESCAPE) { c = s.charAt(++i); if (c == ESCAPE) { array[ai++] = (short) c; } else { int runLength = (int) c; short runValue = (short) s.charAt(++i); for (int j=0; j<runLength; ++j) { array[ai++] = runValue; } } } else { array[ai++] = (short) c; } } if (ai != length) { throw new InternalError("Bad run-length encoded short array"); } return array; } /** * Construct an array of bytes from a run-length encoded string. */ public static final byte[] RLEStringToByteArray(String s) { int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1)); byte[] array = new byte[length]; boolean nextChar = true; char c = 0; int node = 0; int runLength = 0; int i = 2; for (int ai=0; ai<length; ) { // This part of the loop places the next byte into the local // variable 'b' each time through the loop. It keeps the // current character in 'c' and uses the boolean 'nextChar' // to see if we've taken both bytes out of 'c' yet. byte b; if (nextChar) { c = s.charAt(i++); b = (byte) (c >> 8); nextChar = false; } else { b = (byte) (c & 0xFF); nextChar = true; } // This part of the loop is a tiny state machine which handles // the parsing of the run-length encoding. This would be simpler // if we could look ahead, but we can't, so we use 'node' to // move between three nodes in the state machine. switch (node) { case 0: // Normal idle node if (b == ESCAPE_BYTE) { node = 1; } else { array[ai++] = b; } break; case 1: // We have seen one ESCAPE_BYTE; we expect either a second // one, or a run length and value. if (b == ESCAPE_BYTE) { array[ai++] = ESCAPE_BYTE; node = 0; } else { runLength = b; // Interpret signed byte as unsigned if (runLength < 0) { runLength += 0x100; } node = 2; } break; case 2: // We have seen an ESCAPE_BYTE and length byte. We interpret // the next byte as the value to be repeated. for (int j=0; j<runLength; ++j) { array[ai++] = b; } node = 0; break; } } if (node != 0) { throw new InternalError("Bad run-length encoded byte array"); } if (i != s.length()) { throw new InternalError("Excess data in RLE byte array string"); } return array; } /** * Construct an array of shorts from a run-length encoded string. */ static public final char[] RLEStringToCharArray(String s) { int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1)); char[] array = new char[length]; int ai = 0; for (int i=2; i<s.length(); ++i) { char c = s.charAt(i); if (c == ESCAPE) { c = s.charAt(++i); if (c == ESCAPE) { array[ai++] = c; } else { int runLength = (int) c; char runValue = s.charAt(++i); for (int j=0; j<runLength; ++j) array[ai++] = runValue; } } else { array[ai++] = c; } } if (ai != length) throw new InternalError("Bad run-length encoded short array"); return array; } /** * Construct an array of ints from a run-length encoded string. */ static public final int[] RLEStringToIntArray(String s) { int length = getInt(s, 0); int[] array = new int[length]; int ai = 0, i = 1; int maxI = s.length() / 2; while (ai < length && i < maxI) { int c = getInt(s, i++); if (c == ESCAPE) { c = getInt(s, i++); if (c == ESCAPE) { array[ai++] = c; } else { int runLength = c; int runValue = getInt(s, i++); for (int j=0; j<runLength; ++j) { array[ai++] = runValue; } } } else { array[ai++] = c; } } if (ai != length || i != maxI) { throw new InternalError("Bad run-length encoded int array"); } return array; } /** * Format a String for representation in a source file. This includes * breaking it into lines escaping characters using octal notation * when necessary (control characters and double quotes). */ public static final String formatForSource(String s) { StringBuffer buffer = new StringBuffer(); for (int i=0; i<s.length();) { if (i > 0) buffer.append("+\n"); buffer.append(" \""); int count = 11; while (i<s.length() && count<80) { char c = s.charAt(i++); if (c < '\u0020' || c == '"') { // Represent control characters and the double quote // using octal notation; otherwise the string we form // won't compile, since Unicode escape sequences are // processed before tokenization. buffer.append('\\'); buffer.append(HEX_DIGIT[(c & 0700) >> 6]); // HEX_DIGIT works for octal buffer.append(HEX_DIGIT[(c & 0070) >> 3]); buffer.append(HEX_DIGIT[(c & 0007)]); count += 4; } else if (c <= '\u007E') { buffer.append(c); count += 1; } else { buffer.append("\\u"); buffer.append(HEX_DIGIT[(c & 0xF000) >> 12]); buffer.append(HEX_DIGIT[(c & 0x0F00) >> 8]); buffer.append(HEX_DIGIT[(c & 0x00F0) >> 4]); buffer.append(HEX_DIGIT[(c & 0x000F)]); count += 6; } } buffer.append('"'); } return buffer.toString(); } public static final String hex(char ch) { StringBuffer buff = new StringBuffer(); return hex(ch, buff).toString(); } public static final StringBuffer hex(String src, StringBuffer buff) { if (src != null && buff != null) { int strLen = src.length(); int x = 0; hex(src.charAt(x), buff); while(x<strLen) { buff.append(','); hex(src.charAt(x++), buff); } } return buff; } public static final String hex(String str) { StringBuffer buff = new StringBuffer(); hex(str, buff); return buff.toString(); } public static final String hex(StringBuffer buff) { return hex(buff.toString()); } public static final StringBuffer hex(char ch, StringBuffer buff) { for (int shift = 12; shift >=0; shift-=4) { buff.append( HEX_DIGIT[(byte)((ch >> shift) & 0x0F)]); } return buff; } static final int getInt(String s, int i) { return (((int) s.charAt(2*i)) << 16) | (int) s.charAt(2*i+1); } static final char[] HEX_DIGIT = {'0','1','2','3','4','5','6','7', '8','9','A','B','C','D','E','F'}; }