/* * This file is part of the LIRE project: http://lire-project.net * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval - * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 */ package net.semanticmetadata.lire.classifiers; import junit.framework.TestCase; import java.util.Random; /** * Created by lazaros on 11/12/2015. * * @author Lazaros Tsochatzidis, ltsochat@ee.duth.gr */ public class TestKMeans extends TestCase { public void testKMeans() throws Exception { //TestCase parameters int dimensionality=128; int Nclusters=50; int Ndata=10000; // Populating KMeans KMeans kMeans=new KMeans(Nclusters); Random rand=new Random(); double[] point; for (int i=0;i<Ndata;i++) { point=new double[dimensionality]; for (int j=0;j<dimensionality;j++){ point[j]=rand.nextDouble(); } kMeans.addFeature(point); } //Clustering kMeans.init(); System.out.println("Step."); double threshold = Math.max(20.0D, (double) kMeans.getFeatureCount() / 1000.0D); double err1 = kMeans.clusteringStep(); while(err1 > threshold) { System.out.println(" -> Next step. Stress difference ~ " + (int) err1); err1 = kMeans.clusteringStep(); } } public void testParallelKMeans() throws Exception { //TestCase parameters int dimensionality=128; int Nclusters=50; int Ndata=10000; // Populating KMeans KMeans kMeans=new ParallelKMeans(Nclusters); Random rand=new Random(); double[] point; for (int i=0;i<Ndata;i++) { point=new double[dimensionality]; for (int j=0;j<dimensionality;j++){ point[j]=rand.nextDouble(); } kMeans.addFeature(point); } //Clustering kMeans.init(); System.out.println("Step."); double threshold = Math.max(20.0D, (double) kMeans.getFeatureCount() / 1000.0D); double err1 = kMeans.clusteringStep(); while(err1 > threshold) { System.out.println(" -> Next step. Stress difference ~ " + (int) err1); err1 = kMeans.clusteringStep(); } } }