/* * This file is part of the LIRE project: http://lire-project.net * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval – * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 * * Copyright statement: * ==================== * (c) 2002-2013 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire, http://www.lire-project.net * * Updated: 11.07.13 10:31 */ package net.semanticmetadata.lire.imageanalysis.features.global; import net.semanticmetadata.lire.builders.DocumentBuilder; import net.semanticmetadata.lire.imageanalysis.features.GlobalFeature; import net.semanticmetadata.lire.imageanalysis.features.LireFeature; import net.semanticmetadata.lire.utils.ImageUtils; import net.semanticmetadata.lire.utils.MetricsUtils; import java.awt.image.BufferedImage; import java.awt.image.WritableRaster; import java.util.Arrays; /** * A simple implementation of the original local binary pattern texture feature. * @author Mathias Lux, mathias@juggle.at * Time: 21.06.13 13:51 */ public class LocalBinaryPatterns implements GlobalFeature { double[] histogram = new double[256]; @Override public void extract(BufferedImage image) { Arrays.fill(histogram, 0d); extractRadiusWithOne(image); } private void extractRadiusWithOne(BufferedImage image) { // first convert to intensity only. WritableRaster raster = ImageUtils.getGrayscaleImage(image).getRaster(); // cached pixel array int[] pixel = new int[9]; int bin = 0; // now fill histogram according to LBP definition. for (int x = 0; x < raster.getWidth() - 2; x++) { for (int y = 0; y < raster.getHeight() - 2; y++) { raster.getPixels(x, y, 3, 3, pixel); if (pixel[0] >= pixel[4]) bin += 1; if (pixel[1] >= pixel[4]) bin += 2; if (pixel[2] >= pixel[4]) bin += 4; if (pixel[5] >= pixel[4]) bin += 8; if (pixel[8] >= pixel[4]) bin += 16; if (pixel[7] >= pixel[4]) bin += 32; if (pixel[6] >= pixel[4]) bin += 64; if (pixel[3] >= pixel[4]) bin += 128; histogram[bin]++; bin = 0; } } // normalize & quantize histogram. double max = 0; for (int i = 0; i < histogram.length; i++) { max = Math.max(histogram[i], max); } for (int i = 0; i < histogram.length; i++) { histogram[i] = Math.floor((histogram[i] / max) * 127); } } @SuppressWarnings("unused") private void extractWithRadiusTwo(BufferedImage image) { // first convert to intensity only. WritableRaster raster = ImageUtils.getGrayscaleImage(image).getRaster(); // cached pixel array int[] pixel = new int[25]; int bin = 0; // now fill histogram according to LBP definition. for (int x = 0; x < raster.getWidth() - 4; x++) { for (int y = 0; y < raster.getHeight() - 4; y++) { raster.getPixels(x, y, 5, 5, pixel); if (pixel[1] >= pixel[12]) bin += 1; if (pixel[2] >= pixel[12]) bin += 2; if (pixel[3] >= pixel[12]) bin += 4; if (pixel[9] >= pixel[12]) bin += 8; if (pixel[14] >= pixel[12]) bin += 16; if (pixel[19] >= pixel[12]) bin += 32; if (pixel[23] >= pixel[12]) bin += 64; if (pixel[22] >= pixel[12]) bin += 128; if (pixel[21] >= pixel[12]) bin += 256; if (pixel[15] >= pixel[12]) bin += 512; if (pixel[10] >= pixel[12]) bin += 1024; if (pixel[5] >= pixel[12]) bin += 2048; histogram[bin]++; bin = 0; } } // normalize & quantize histogram. double max = 0; for (int i = 0; i < histogram.length; i++) { max = Math.max(histogram[i], max); } for (int i = 0; i < histogram.length; i++) { histogram[i] = Math.floor((histogram[i] / max) * 128); } } @Override public byte[] getByteArrayRepresentation() { byte[] rep = new byte[histogram.length]; for (int i = 0; i < histogram.length; i++) { rep[i] = (byte) histogram[i]; } return rep; } @Override public void setByteArrayRepresentation(byte[] in) { setByteArrayRepresentation(in, 0, in.length); } @Override public void setByteArrayRepresentation(byte[] in, int offset, int length) { for (int i = 0; i < length; i++) { histogram[i] = in[i+offset]; } } @Override public double[] getFeatureVector() { return histogram; } @Override public double getDistance(LireFeature feature) { return MetricsUtils.distL1(histogram, feature.getFeatureVector()); } // @Override // public String getStringRepresentation() { // throw new UnsupportedOperationException("Not implemented!"); // } // // @Override // public void setStringRepresentation(String s) { // throw new UnsupportedOperationException("Not implemented!"); // } @Override public String getFeatureName() { return "Local Binary Patterns"; } @Override public String getFieldName() { return DocumentBuilder.FIELD_NAME_LOCAL_BINARY_PATTERNS; } }