/* * This file is part of the LIRE project: http://lire-project.net * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval – * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 * * Copyright statement: * ==================== * (c) 2002-2013 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire, http://www.lire-project.net * * Updated: 11.07.13 10:07 */ package net.semanticmetadata.lire.imageanalysis.features.global.spatialpyramid; import net.semanticmetadata.lire.imageanalysis.features.GlobalFeature; import net.semanticmetadata.lire.imageanalysis.features.LireFeature; import net.semanticmetadata.lire.imageanalysis.features.global.RotationInvariantLocalBinaryPatterns; import net.semanticmetadata.lire.utils.MetricsUtils; import java.awt.image.BufferedImage; /** * A spatial pyramid version of the rotation invariant local binary pattern feature. * @author Mathias Lux, mathias@juggle.at * Date: 21.06.13, 15:38 */ public class SPLBP implements GlobalFeature { int histogramSize = 36 * 5 + 36 * 4 * 4; double[] histogram = new double[histogramSize]; // Temp: int tmp; @Override public void extract(BufferedImage bimg) { // level 0: RotationInvariantLocalBinaryPatterns feature = new RotationInvariantLocalBinaryPatterns(); feature.extract(bimg); System.arraycopy(feature.getFeatureVector(), 0, histogram, 0, 36); // level 1: int w = bimg.getWidth() / 2; int h = bimg.getHeight() / 2; feature.extract(bimg.getSubimage(0, 0, w, h)); System.arraycopy(feature.getFeatureVector(), 0, histogram, 36 * 1, 36); feature.extract(bimg.getSubimage(w, 0, w, h)); System.arraycopy(feature.getFeatureVector(), 0, histogram, 36 * 2, 36); feature.extract(bimg.getSubimage(0, h, w, h)); System.arraycopy(feature.getFeatureVector(), 0, histogram, 36 * 3, 36); feature.extract(bimg.getSubimage(w, h, w, h)); System.arraycopy(feature.getFeatureVector(), 0, histogram, 36 * 4, 36); // level 2: int wstep = bimg.getWidth() / 4; int hstep = bimg.getHeight() / 4; int binPos = 5; // the next free section in the histogram for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { feature.extract(bimg.getSubimage(i * wstep, j * hstep, wstep, hstep)); System.arraycopy(feature.getFeatureVector(), 0, histogram, 36 * binPos, 36); binPos++; } } } /** * Provides a faster way of serialization. * * @return a byte array that can be read with the corresponding method. * @see SPCEDD#setByteArrayRepresentation(byte[]) */ public byte[] getByteArrayRepresentation() { byte[] result = new byte[histogram.length]; for (int i = 0; i < result.length; i++) { result[i] = (byte) histogram[i]; } return result; } /** * Reads descriptor from a byte array. Much faster than the String based method. * * @param in byte array from corresponding method * @see SPCEDD#getByteArrayRepresentation */ public void setByteArrayRepresentation(byte[] in) { setByteArrayRepresentation(in, 0, in.length); } public void setByteArrayRepresentation(byte[] in, int offset, int length) { for (int i = offset; i < offset + length; i++) { tmp = in[i] + 128; histogram[i-offset] = in[i]; } } @Override public double[] getFeatureVector() { return histogram; } @Override public double getDistance(LireFeature feature) { if (!(feature instanceof SPLBP)) return -1; return MetricsUtils.distL1(histogram, feature.getFeatureVector()); } // @Override // public String getStringRepresentation() { // throw new UnsupportedOperationException("Not implemented!"); // } // // @Override // public void setStringRepresentation(String s) { // throw new UnsupportedOperationException("Not implemented!"); // } @Override public String getFeatureName() { return "Spatial Pyramid of Local Binary Patterns (simple)"; } @Override public String getFieldName() { return "f_splbp"; } }