/* * This file is part of the LIRE project: http://lire-project.net * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval – * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 * * Copyright statement: * ==================== * (c) 2002-2013 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire, http://www.lire-project.net * * Updated: 11.07.13 10:33 */ package net.semanticmetadata.lire.imageanalysis.features.global; import net.semanticmetadata.lire.imageanalysis.features.GlobalFeature; import net.semanticmetadata.lire.imageanalysis.features.LireFeature; import net.semanticmetadata.lire.utils.ImageUtils; import net.semanticmetadata.lire.utils.MetricsUtils; import java.awt.image.BufferedImage; import java.awt.image.WritableRaster; /** * Simple fuzzy 64 bin Opponent Histogram, based on the Opponent color space as described in van de Sande, Gevers & Snoek (2010) * "Evaluating Color Descriptors for Object and Scene Recognition", IEEE PAMI (see BibTeX in the source code). Also there is the * rank of the pixel joint. * * @author Mathias Lux, mathias@juggle.at * Date: 18.12.12 * Time: 11:53 */ /* @ARTICLE{Sande2010, author={van de Sande, K.E.A. and Gevers, T. and Snoek, C.G.M.}, journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on}, title={Evaluating Color Descriptors for Object and Scene Recognition}, year={2010}, month={sept. }, volume={32}, number={9}, pages={1582 -1596}, doi={10.1109/TPAMI.2009.154}, ISSN={0162-8828}, } */ public class FuzzyOpponentHistogram implements GlobalFeature { final double sq2 = Math.sqrt(2d); final double sq6 = Math.sqrt(3d); final double sq3 = Math.sqrt(6d); double o1, o2, o3; double[] o1f = new double[4]; double[] o2f = new double[4]; double[] o3f = new double[4]; private int[] tmpIntensity = new int[1]; double[] descriptor; public void extract(BufferedImage bimg) { // extract: double[][] histogram = new double[64][9]; for (int i = 0; i < histogram.length; i++) { for (int j = 0; j < histogram[i].length; j++) histogram[i][j] = 0; } WritableRaster grey = ImageUtils.getGrayscaleImage(bimg).getRaster(); WritableRaster raster = bimg.getRaster(); int[] px = new int[3]; int[] intens = new int[1]; int colorPos; for (int x = 1; x < raster.getWidth() - 1; x++) { for (int y = 1; y < raster.getHeight() - 1; y++) { raster.getPixel(x, y, px); o1 = (double) (px[0] - px[1]) / sq2; o2 = (double) (px[0] + px[1] - 2 * px[2]) / sq6; o3 = (double) (px[0] + px[1] + px[2]) / sq3; // Normalize ... easier to handle. o1 = (o1 + 255d / sq2) / (510d / sq2); o2 = (o2 + 510d / sq6) / (1020d / sq6); o3 = o3 / (3d * 255d / sq3); // get the array position. getFuzzyMembership(o1, o1f); getFuzzyMembership(o2, o2f); getFuzzyMembership(o3, o3f); int rank = 0; grey.getPixel(x, y, intens); if (getIntensity(x - 1, y - 1, grey) > intens[0]) rank++; if (getIntensity(x, y - 1, grey) > intens[0]) rank++; if (getIntensity(x + 1, y - 1, grey) > intens[0]) rank++; if (getIntensity(x - 1, y + 1, grey) > intens[0]) rank++; if (getIntensity(x, y + 1, grey) > intens[0]) rank++; if (getIntensity(x + 1, y + 1, grey) > intens[0]) rank++; if (getIntensity(x - 1, y, grey) > intens[0]) rank++; if (getIntensity(x + 1, y, grey) > intens[0]) rank++; for (int i = 0; i < o1f.length; i++) { if (o1f[i] == 0) continue; for (int j = 0; j < o2f.length; j++) { if (o2f[j] == 0) continue; for (int k = 0; k < o3f.length; k++) { if (o3f[k] == 0) continue; colorPos = i + j * 3 + k * 3 * 3; histogram[colorPos][rank]+=o1f[i]*o2f[j]*o3f[k]; } } } } } // normalize with max norm & quantize to [0,127]: descriptor = new double[64*9]; double max = 0; for (int i = 0; i < histogram.length; i++) { for (int j = 0; j < histogram[i].length; j++) max = Math.max(histogram[i][j], max); } for (int i = 0; i < histogram.length; i++) { for (int j = 0; j < histogram[i].length; j++) descriptor[i+27*j] = Math.floor(127d * (histogram[i][j] / max)); } } /** * Creates a membership variable for each of the three bins given in out[] * * @param in * @param out the array to put the membership values in. */ private void getFuzzyMembership(double in, double[] out) { out[0] = 0d; out[1] = 0d; out[2] = 0d; out[3] = 0d; if (in <= 0.15) { out[0] = 1d; } else if (in > 0.15 && in < 0.25) { out[0] = ((in - 0.15) * 10.0); out[1] = 1d - out[0]; } else if (in >= 0.25 && in <= 0.45) { out[1] = 1d; } else if (in > 0.45 && in < 0.55) { out[1] = ((in - 0.45) * 10.0); out[2] = 1d - out[1]; } else if (in >= 0.55 && in <= 0.75) { out[2] = 1d; } else if (in > 0.75 && in < 0.85) { out[2] = ((in - 0.75) * 10.0); out[3] = 1d - out[2]; } else if (in >= 0.85) { out[3] = 1d; } } private int getIntensity(int x, int y, WritableRaster grey) { grey.getPixel(x, y, tmpIntensity); return tmpIntensity[0]; } public byte[] getByteArrayRepresentation() { byte[] result = new byte[descriptor.length]; for (int i = 0; i < result.length; i++) { result[i] = (byte) descriptor[i]; } return result; } public void setByteArrayRepresentation(byte[] in) { descriptor = new double[in.length]; for (int i = 0; i < descriptor.length; i++) { descriptor[i] = in[i]; } } public void setByteArrayRepresentation(byte[] in, int offset, int length) { descriptor = new double[length]; for (int i = offset; i < length; i++) { descriptor[i] = in[i]; } } public double[] getFeatureVector() { return descriptor; } @Override public double getDistance(LireFeature feature) { if (!(feature instanceof FuzzyOpponentHistogram)) throw new UnsupportedOperationException("Wrong descriptor."); return MetricsUtils.jsd(((FuzzyOpponentHistogram) feature).descriptor, descriptor); } // public String getStringRepresentation() { // StringBuilder sb = new StringBuilder(descriptor.length * 2 + 25); // sb.append("ophist"); // sb.append(' '); // sb.append(descriptor.length); // sb.append(' '); // for (double aData : descriptor) { // sb.append((int) aData); // sb.append(' '); // } // return sb.toString().trim(); // } // // public void setStringRepresentation(String s) { // StringTokenizer st = new StringTokenizer(s); // if (!st.nextToken().equals("ophist")) // throw new UnsupportedOperationException("This is not a OpponentHistogram descriptor."); // descriptor = new double[Integer.parseInt(st.nextToken())]; // for (int i = 0; i < descriptor.length; i++) { // if (!st.hasMoreTokens()) // throw new IndexOutOfBoundsException("Too few numbers in string representation."); // descriptor[i] = Integer.parseInt(st.nextToken()); // } // // } @Override public String getFeatureName() { return "Fuzzy Opponent Histogram"; } @Override public String getFieldName() { return "f_fuzopphis"; } }