/* * This file is part of the LIRE project: http://lire-project.net * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval – * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 * * Copyright statement: * ==================== * (c) 2002-2013 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire, http://www.lire-project.net * * Updated: 11.07.13 10:07 */ package net.semanticmetadata.lire.imageanalysis.features.global; import net.semanticmetadata.lire.builders.DocumentBuilder; import net.semanticmetadata.lire.imageanalysis.features.GlobalFeature; import net.semanticmetadata.lire.imageanalysis.features.LireFeature; import net.semanticmetadata.lire.utils.MetricsUtils; import java.awt.color.ColorSpace; import java.awt.image.BufferedImage; import java.awt.image.ColorConvertOp; import java.util.Arrays; /** * This class is built the same way as PHOG, but instead of measuring the orientation of gradients, this class uses a * histogram of rotation-invariant local binary patterns. * * @author Mathias Lux, mathias@juggle.at, 06.07.13 */ public class BinaryPatternsPyramid implements GlobalFeature { static ColorConvertOp grayscale = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null); int[] tmp255 = {255}; int[] tmp128 = {128}; int[] tmp000 = {0}; int[] tmpPixel = {0}; // double thresholds for Canny edge detector double thresholdLow = 80, thresholdHigh = 100; static int[] binTranslate = new int[256]; int bins = 36; double[] histogram = new double[bins + 4 * bins + 4 * 4 * bins]; static { Arrays.fill(binTranslate, 0); binTranslate[0] = 0; binTranslate[1] = 1; binTranslate[3] = 2; binTranslate[5] = 3; binTranslate[7] = 4; binTranslate[9] = 5; binTranslate[11] = 6; binTranslate[13] = 7; binTranslate[15] = 8; binTranslate[17] = 9; binTranslate[19] = 10; binTranslate[21] = 11; binTranslate[23] = 12; binTranslate[25] = 13; binTranslate[27] = 14; binTranslate[29] = 15; binTranslate[31] = 16; binTranslate[37] = 17; binTranslate[39] = 18; binTranslate[43] = 19; binTranslate[45] = 20; binTranslate[47] = 21; binTranslate[51] = 22; binTranslate[53] = 23; binTranslate[55] = 24; binTranslate[59] = 25; binTranslate[61] = 26; binTranslate[63] = 27; binTranslate[85] = 28; binTranslate[87] = 29; binTranslate[91] = 30; binTranslate[95] = 31; binTranslate[111] = 32; binTranslate[119] = 33; binTranslate[127] = 34; binTranslate[255] = 35; } @Override public void extract(BufferedImage bimg) { // All for Canny Edge ... BufferedImage imgEdges, imgGray; double[][] gx = null, gy = null; double[][] gd, gm; // doing canny edge detection first: // filter images: imgEdges = grayscale.filter(bimg, new BufferedImage(bimg.getWidth(), bimg.getHeight(), BufferedImage.TYPE_BYTE_GRAY)); imgGray = grayscale.filter(bimg, new BufferedImage(bimg.getWidth(), bimg.getHeight(), BufferedImage.TYPE_BYTE_GRAY)); // gray = gaussian.filter(gray, null); // TODO: Combine the next few steps to just iterate through the pixels once! gx = new double[imgEdges.getWidth()][imgEdges.getHeight()]; gy = new double[imgEdges.getWidth()][imgEdges.getHeight()]; sobelFilter(imgEdges, gx, gy); // gx = sobelFilterX(gray); // gy = sobelFilterY(gray); int width = imgEdges.getWidth(); int height = imgEdges.getHeight(); gd = new double[width][height]; gm = new double[width][height]; for (int x = 0; x < width; x++) { for (int y = 0; y < height; y++) { // setting gradient magnitude and gradient direction if (gx[x][y] != 0) { gd[x][y] = Math.atan(gy[x][y] / gx[x][y]); } else { gd[x][y] = Math.PI / 2d; } gm[x][y] = Math.hypot(gy[x][y], gx[x][y]); } } // Non-maximum suppression for (int x = 0; x < width; x++) { imgEdges.getRaster().setPixel(x, 0, new int[]{255}); imgEdges.getRaster().setPixel(x, height - 1, new int[]{255}); } for (int y = 0; y < height; y++) { imgEdges.getRaster().setPixel(0, y, new int[]{255}); imgEdges.getRaster().setPixel(width - 1, y, new int[]{255}); } for (int x = 1; x < width - 1; x++) { for (int y = 1; y < height - 1; y++) { if (gd[x][y] < (Math.PI / 8d) && gd[x][y] >= (-Math.PI / 8d)) { if (gm[x][y] > gm[x + 1][y] && gm[x][y] > gm[x - 1][y]) setPixel(x, y, imgEdges, gm[x][y]); else imgEdges.getRaster().setPixel(x, y, tmp255); } else if (gd[x][y] < (3d * Math.PI / 8d) && gd[x][y] >= (Math.PI / 8d)) { if (gm[x][y] > gm[x - 1][y - 1] && gm[x][y] > gm[x - 1][y - 1]) setPixel(x, y, imgEdges, gm[x][y]); else imgEdges.getRaster().setPixel(x, y, tmp255); } else if (gd[x][y] < (-3d * Math.PI / 8d) || gd[x][y] >= (3d * Math.PI / 8d)) { if (gm[x][y] > gm[x][y + 1] && gm[x][y] > gm[x][y + 1]) setPixel(x, y, imgEdges, gm[x][y]); else imgEdges.getRaster().setPixel(x, y, tmp255); } else if (gd[x][y] < (-Math.PI / 8d) && gd[x][y] >= (-3d * Math.PI / 8d)) { if (gm[x][y] > gm[x + 1][y - 1] && gm[x][y] > gm[x - 1][y + 1]) setPixel(x, y, imgEdges, gm[x][y]); else imgEdges.getRaster().setPixel(x, y, tmp255); } else { imgEdges.getRaster().setPixel(x, y, tmp255); } } } // hysteresis ... walk along lines of strong pixels and make the weak ones strong. int[] tmp = {0}; for (int x = 1; x < width - 1; x++) { for (int y = 1; y < height - 1; y++) { if (imgEdges.getRaster().getPixel(x, y, tmp)[0] < 50) { // It's a strong pixel, lets find the neighbouring weak ones. trackWeakOnes(x, y, imgEdges); } } } // removing the single weak pixels. for (int x = 2; x < width - 2; x++) { for (int y = 2; y < height - 2; y++) { if (imgEdges.getRaster().getPixel(x, y, tmp)[0] > 50) { imgEdges.getRaster().setPixel(x, y, tmp255); } } } // Canny Edge Detection over ... lets go for the PHOG ... // histogram = new double[bins + 4 * bins + 4 * 4 * bins]; // for level 3: // histogram = new double[5 * bins + 4*4*bins + 4*4*4*bins]; //level0 System.arraycopy(getHistogram(0, 0, width, height, imgEdges, imgGray, gd), 0, histogram, 0, bins); //level1 System.arraycopy(getHistogram(0, 0, width / 2, height / 2, imgEdges, imgGray, gd), 0, histogram, bins, bins); System.arraycopy(getHistogram(width / 2, 0, width / 2, height / 2, imgEdges, imgGray, gd), 0, histogram, 2 * bins, bins); System.arraycopy(getHistogram(0, height / 2, width / 2, height / 2, imgEdges, imgGray, gd), 0, histogram, 3 * bins, bins); System.arraycopy(getHistogram(width / 2, height / 2, width / 2, height / 2, imgEdges, imgGray, gd), 0, histogram, 4 * bins, bins); // level 2 int wstep = width / 4; int hstep = height / 4; int binPos = 5; // the next free section in the histogram for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { System.arraycopy(getHistogram(i * wstep, j * hstep, wstep, hstep, imgEdges, imgGray, gd), 0, histogram, binPos * bins, bins); binPos++; } } // level 3 // wstep = width / 8; // hstep = height / 8; // for (int i = 0; i < 8; i++) { // for (int j = 0; j < 8; j++) { // System.arraycopy(getHistogram(i * wstep, j * hstep, wstep, hstep, imgEdges, imgGray, gd), // 0, histogram, binPos * bins, bins); // binPos++; // } // } } @Override public byte[] getByteArrayRepresentation() { byte[] result = new byte[histogram.length/2]; int tmp; // stuffing two values in one byte. for (int i = 0; i < result.length; i++) { tmp = ((int) (histogram[(i << 1)])) << 4; tmp = (tmp | ((int) (histogram[(2 * i) + 1]))); result[i] = (byte) (tmp - 128); } return result; } @Override public void setByteArrayRepresentation(byte[] in) { setByteArrayRepresentation(in, 0, in.length); } @Override public void setByteArrayRepresentation(byte[] in, int offset, int length) { int tmp; for (int i = offset; i < length; i++) { tmp = in[i]+128; histogram[((i-offset) << 1) + 1] = ((double) (tmp & 0x000F)); histogram[(i-offset) << 1] = ((double) (tmp >> 4)); } } @Override public double[] getFeatureVector() { return histogram; } @Override public double getDistance(LireFeature feature) { // chi^2 distance ... as mentioned in the paper. // double distance = 0; // double lower; // for (int i = 0; i < histogram.length; i++) { // lower = histogram[i] + ((BinaryPatternsPyramid) feature).histogram[i]; // if (lower > 0) // distance += (histogram[i] - ((BinaryPatternsPyramid) feature).histogram[i]) * (histogram[i] - ((BinaryPatternsPyramid) feature).histogram[i]) / lower; // } // return (float) distance; return MetricsUtils.distL1(histogram, ((BinaryPatternsPyramid) feature).histogram); } private int getBin(int[] pattern) { int min = Integer.MAX_VALUE; for (int i = 0; i < 8; i++) { min = Math.min(getNumber(pattern), min); // rotate: int tmp = pattern[7]; for (int j = pattern.length - 1; j > 0; j--) { pattern[j] = pattern[j - 1]; } pattern[0] = tmp; } return binTranslate[min]; } private int getNumber(int[] pattern) { int result = 0; int current = 1; for (int i = 0; i < pattern.length; i++) { if (pattern[i] > 0) result += current; current *= 2; } return result; } private double[] getHistogram(int startX, int startY, int width, int height, BufferedImage edges, BufferedImage original, double gd[][]) { int[] tmp = {0}; double[] result = new double[36]; double actual = 0; int bin; int[] pixel = new int[9]; int[] pattern = new int[8]; // set initial histogram to 0 Arrays.fill(result, 0d); // find and increment the right bin/s for (int x = startX; x < startX + width - 2; x++) { for (int y = startY; y < startY + height - 2; y++) { if (edges.getRaster().getPixel(x, y, tmp)[0] < 50) { // And now for the binary patterns ... Arrays.fill(pattern, 0); original.getRaster().getPixels(x, y, 3, 3, pixel); if (pixel[0] >= pixel[4]) pattern[0] = 1; if (pixel[1] >= pixel[4]) pattern[1] = 1; if (pixel[2] >= pixel[4]) pattern[2] = 1; if (pixel[5] >= pixel[4]) pattern[3] = 1; if (pixel[8] >= pixel[4]) pattern[4] = 1; if (pixel[7] >= pixel[4]) pattern[5] = 1; if (pixel[6] >= pixel[4]) pattern[6] = 1; if (pixel[3] >= pixel[4]) pattern[7] = 1; result[getBin(pattern)]++; } } } // normalize histogram to max norm. double max = 0d; for (int i = 0; i < result.length; i++) { max = Math.max(result[i], max); } if (max > 0d) { for (int i = 0; i < result.length; i++) { // quantize single values to xx steps to compress feature a little bit. result[i] = Math.floor(16d * result[i] / max); result[i] = Math.min(15d, result[i]); } } return result; } /** * Recursive tracking of weak points. * * @param x * @param y * @param gray */ private void trackWeakOnes(int x, int y, BufferedImage gray) { for (int xx = x - 1; xx <= x + 1; xx++) for (int yy = y - 1; yy <= y + 1; yy++) { if (isWeak(xx, yy, gray)) { gray.getRaster().setPixel(xx, yy, tmp000); trackWeakOnes(xx, yy, gray); } } } private boolean isWeak(int x, int y, BufferedImage gray) { return (gray.getRaster().getPixel(x, y, tmpPixel)[0] > 0 && gray.getRaster().getPixel(x, y, tmpPixel)[0] < 255); } private void setPixel(int x, int y, BufferedImage gray, double v) { if (v > thresholdLow) gray.getRaster().setPixel(x, y, tmp000); else if (v > thresholdHigh) gray.getRaster().setPixel(x, y, tmp128); else gray.getRaster().setPixel(x, y, tmp255); } private void sobelFilter(BufferedImage gray, double[][] gx, double[][] gy) { int[] tmp = new int[4]; int tmpSumX = 0, tmpSumY = 0, pix; for (int x = 1; x < gray.getWidth() - 1; x++) { for (int y = 1; y < gray.getHeight() - 1; y++) { tmpSumX = 0; tmpSumY = 0; pix = gray.getRaster().getPixel(x - 1, y - 1, tmp)[0]; tmpSumX += pix; tmpSumY += pix; pix = gray.getRaster().getPixel(x - 1, y, tmp)[0]; tmpSumX += 2 * pix; pix = gray.getRaster().getPixel(x - 1, y + 1, tmp)[0]; tmpSumX += pix; tmpSumY -= pix; pix = gray.getRaster().getPixel(x + 1, y - 1, tmp)[0]; tmpSumX -= pix; tmpSumY += pix; pix = gray.getRaster().getPixel(x + 1, y, tmp)[0]; tmpSumX -= 2 * pix; pix = gray.getRaster().getPixel(x + 1, y + 1, tmp)[0]; tmpSumX -= pix; tmpSumY -= pix; gx[x][y] = tmpSumX; tmpSumY += 2 * gray.getRaster().getPixel(x, y - 1, tmp)[0]; tmpSumY -= 2 * gray.getRaster().getPixel(x, y + 1, tmp)[0]; gy[x][y] = tmpSumY; } } for (int x = 0; x < gray.getWidth(); x++) { gx[x][0] = 0; gx[x][gray.getHeight() - 1] = 0; gy[x][0] = 0; gy[x][gray.getHeight() - 1] = 0; } for (int y = 0; y < gray.getHeight(); y++) { gx[0][y] = 0; gx[gray.getWidth() - 1][y] = 0; gy[0][y] = 0; gy[gray.getWidth() - 1][y] = 0; } } @Override public String getFeatureName() { return "Spatial Pyramid of Local Binary Patterns"; } @Override public String getFieldName() { return DocumentBuilder.FIELD_NAME_BINARY_PATTERNS_PYRAMID; } }