/* * This file is part of the LIRE project: http://lire-project.net * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval – * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 * * Copyright statement: * ==================== * (c) 2002-2013 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire, http://www.lire-project.net * * Updated: 11.07.13 10:31 */ package net.semanticmetadata.lire.imageanalysis.features.global; import net.semanticmetadata.lire.builders.DocumentBuilder; import net.semanticmetadata.lire.imageanalysis.features.GlobalFeature; import net.semanticmetadata.lire.imageanalysis.features.LireFeature; import net.semanticmetadata.lire.imageanalysis.features.global.fcth.*; import net.semanticmetadata.lire.utils.ImageUtils; import java.awt.image.BufferedImage; import java.awt.image.DataBufferInt; import java.util.Arrays; /** * The FCTH feature was created, implemented and provided by Savvas A. Chatzichristofis<br/> * More information can be found in: Savvas A. Chatzichristofis and Yiannis S. Boutalis, * <i>FCTH: Fuzzy Color and Texture Histogram - A Low Level Feature for Accurate Image * Retrieval</i>, in Proceedings of the Ninth International Workshop on Image Analysis for * Multimedia Interactive Services, IEEE, Klagenfurt, May, 2008. * * @author: Savvas A. Chatzichristofis, savvash@gmail.com */ public class FCTH implements GlobalFeature { public boolean Compact = false; protected double[] histogram = new double[192]; int tmp; double distResult = 0; double distTmp1 = 0; double distTmp2 = 0; double distTmpCnt1 = 0; double distTmpCnt2 = 0; double distTmpCnt3 = 0; // Constructor public FCTH() { } // Apply filter public double[] Apply(BufferedImage image) { Fuzzy10Bin Fuzzy10 = new Fuzzy10Bin(false); Fuzzy24Bin Fuzzy24 = new Fuzzy24Bin(false); FuzzyFCTHpart FuccyFCTH = new FuzzyFCTHpart(); double[] Fuzzy10BinResultTable = new double[10]; double[] Fuzzy24BinResultTable = new double[24]; double[] FuzzyHistogram192 = new double[192]; int Method = 2; int width = image.getWidth(); int height = image.getHeight(); for (int R = 0; R < 192; R++) { FuzzyHistogram192[R] = 0; } RGB2HSV HSVConverter = new RGB2HSV(); int[] HSV = new int[3]; WaveletMatrixPlus Matrix = new WaveletMatrixPlus(); double[][] ImageGrid = new double[width][height]; int[][] ImageGridRed = new int[width][height]; int[][] ImageGridGreen = new int[width][height]; int[][] ImageGridBlue = new int[width][height]; int pixel, r,g,b; // extraction is based on a speedup fix from Michael Riegler & Konstantin Pogorelov BufferedImage image_rgb = new BufferedImage(width, height, BufferedImage.TYPE_INT_BGR); image_rgb.getGraphics().drawImage(image, 0, 0, null); int[] pixels = ((DataBufferInt) image_rgb.getRaster().getDataBuffer()).getData(); for (int x = 0; x < width; x++) { for (int y = 0; y < height; y++) { pixel = pixels[y * width + x]; b = (pixel >> 16) & 0xFF; g = (pixel >> 8) & 0xFF; r = (pixel) & 0xFF; ImageGridRed[x][y] = r; ImageGridGreen[x][y] = g; ImageGridBlue[x][y] = b; int mean = (int) (0.114 * b + 0.587 * g + 0.299 * r); ImageGrid[x][y] = mean; } } int NumberOfBlocks = 1600; int Step_X = (int) Math.floor(width / Math.sqrt(NumberOfBlocks)); int Step_Y = (int) Math.floor(height / Math.sqrt(NumberOfBlocks)); if ((Step_X % 2) != 0) { Step_X = Step_X - 1; } if ((Step_Y % 2) != 0) { Step_Y = Step_Y - 1; } if (Step_Y < 4) Step_Y = 4; if (Step_X < 4) Step_X = 4; /// // Filter for (int y = 0; y < height - Step_Y; y += Step_Y) { for (int x = 0; x < width - Step_X; x += Step_X) { //int[][] BinaryBlock = new int[4][4]; double[][] Block = new double[4][4]; int[][] BlockR = new int[4][4]; int[][] BlockG = new int[4][4]; int[][] BlockB = new int[4][4]; int[][] BlockCount = new int[4][4]; int[] CororRed = new int[Step_Y * Step_X]; int[] CororGreen = new int[Step_Y * Step_X]; int[] CororBlue = new int[Step_Y * Step_X]; int[] CororRedTemp = new int[Step_Y * Step_X]; int[] CororGreenTemp = new int[Step_Y * Step_X]; int[] CororBlueTemp = new int[Step_Y * Step_X]; int MeanRed = 0; int MeanGreen = 0; int MeanBlue = 0; int CurrentPixelX = 0; int CurrentPixelY = 0; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { Block[i][j] = 0; BlockCount[i][j] = 0; } } //#endregion int TempSum = 0; for (int i = 0; i < Step_X; i++) { for (int j = 0; j < Step_Y; j++) { CurrentPixelX = 0; CurrentPixelY = 0; if (i >= (Step_X / 4)) CurrentPixelX = 1; if (i >= (Step_X / 2)) CurrentPixelX = 2; if (i >= (3 * Step_X / 4)) CurrentPixelX = 3; if (j >= (Step_Y / 4)) CurrentPixelY = 1; if (j >= (Step_Y / 2)) CurrentPixelY = 2; if (j >= (3 * Step_Y / 4)) CurrentPixelY = 3; Block[CurrentPixelX][CurrentPixelY] += ImageGrid[x + i][y + j]; BlockCount[CurrentPixelX][CurrentPixelY]++; BlockR[CurrentPixelX][CurrentPixelY] = ImageGridRed[x + i][y + j]; BlockG[CurrentPixelX][CurrentPixelY] = ImageGridGreen[x + i][y + j]; BlockB[CurrentPixelX][CurrentPixelY] = ImageGridBlue[x + i][y + j]; CororRed[TempSum] = BlockR[CurrentPixelX][CurrentPixelY]; CororGreen[TempSum] = BlockG[CurrentPixelX][CurrentPixelY]; CororBlue[TempSum] = BlockB[CurrentPixelX][CurrentPixelY]; CororRedTemp[TempSum] = BlockR[CurrentPixelX][CurrentPixelY]; CororGreenTemp[TempSum] = BlockG[CurrentPixelX][CurrentPixelY]; CororBlueTemp[TempSum] = BlockB[CurrentPixelX][CurrentPixelY]; TempSum++; } } for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { Block[i][j] = Block[i][j] / BlockCount[i][j]; } } Matrix = singlePassThreshold(Block, 1); for (int i = 0; i < (Step_Y * Step_X); i++) { MeanRed += CororRed[i]; MeanGreen += CororGreen[i]; MeanBlue += CororBlue[i]; } MeanRed = (int) (MeanRed / (Step_Y * Step_X)); MeanGreen = (int) (MeanGreen / (Step_Y * Step_X)); MeanBlue = (int) (MeanBlue / (Step_Y * Step_X)); HSV = HSVConverter.ApplyFilter(MeanRed, MeanGreen, MeanBlue); if (Compact == false) { Fuzzy10BinResultTable = Fuzzy10.ApplyFilter(HSV[0], HSV[1], HSV[2], Method); Fuzzy24BinResultTable = Fuzzy24.ApplyFilter(HSV[0], HSV[1], HSV[2], Fuzzy10BinResultTable, Method); FuzzyHistogram192 = FuccyFCTH.ApplyFilter(Matrix.F3, Matrix.F2, Matrix.F1, Fuzzy24BinResultTable, Method, 24); } else { Fuzzy10BinResultTable = Fuzzy10.ApplyFilter(HSV[0], HSV[1], HSV[2], Method); FuzzyHistogram192 = FuccyFCTH.ApplyFilter(Matrix.F3, Matrix.F2, Matrix.F1, Fuzzy10BinResultTable, Method, 10); } } } // end of the filter double TotalSum = 0; for (int i = 0; i < 192; i++) { TotalSum += FuzzyHistogram192[i]; } for (int i = 0; i < 192; i++) { FuzzyHistogram192[i] = FuzzyHistogram192[i] / TotalSum; } FCTHQuant Quant = new FCTHQuant(); FuzzyHistogram192 = Quant.Apply(FuzzyHistogram192); return FuzzyHistogram192; } private WaveletMatrixPlus singlePassThreshold(double[][] inputMatrix, int level) { WaveletMatrixPlus TempMatrix = new WaveletMatrixPlus(); level = (int) Math.pow(2.0, level - 1); //GETLENGTH************* double[][] resultMatrix = new double[inputMatrix.length][inputMatrix[0].length]; int xOffset = inputMatrix.length / 2 / level; int yOffset = inputMatrix[0].length / 2 / level; int currentPixel = 0; //double size = inputMatrix.length * inputMatrix[0].length; double multiplier = 0; for (int y = 0; y < inputMatrix[0].length; y++) { for (int x = 0; x < inputMatrix.length; x++) { if ((y < inputMatrix[0].length / 2 / level) && (x < inputMatrix.length / 2 / level)) { currentPixel++; resultMatrix[x][y] = (inputMatrix[2 * x][2 * y] + inputMatrix[2 * x + 1][2 * y] + inputMatrix[2 * x][2 * y + 1] + inputMatrix[2 * x + 1][2 * y + 1]) / 4; double vertDiff = (-inputMatrix[2 * x][2 * y] - inputMatrix[2 * x + 1][2 * y] + inputMatrix[2 * x][2 * y + 1] + inputMatrix[2 * x + 1][2 * y + 1]); double horzDiff = (inputMatrix[2 * x][2 * y] - inputMatrix[2 * x + 1][2 * y] + inputMatrix[2 * x][2 * y + 1] - inputMatrix[2 * x + 1][2 * y + 1]); double diagDiff = (-inputMatrix[2 * x][2 * y] + inputMatrix[2 * x + 1][2 * y] + inputMatrix[2 * x][2 * y + 1] - inputMatrix[2 * x + 1][2 * y + 1]); resultMatrix[x + xOffset][y] = (int) (byte) (multiplier + Math.abs(vertDiff)); resultMatrix[x][y + yOffset] = (int) (byte) (multiplier + Math.abs(horzDiff)); resultMatrix[x + xOffset][y + yOffset] = (int) (byte) (multiplier + Math.abs(diagDiff)); } else { if ((x >= inputMatrix.length / level) || (y >= inputMatrix[0].length / level)) { resultMatrix[x][y] = inputMatrix[x][y]; } } } } double Temp1 = 0; double Temp2 = 0; double Temp3 = 0; for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { Temp1 += 0.25 * Math.pow(resultMatrix[2 + i][j], 2); Temp2 += 0.25 * Math.pow(resultMatrix[i][2 + j], 2); Temp3 += 0.25 * Math.pow(resultMatrix[2 + i][2 + j], 2); } } //double[] MatrixResults = new double[4]; TempMatrix.F1 = Math.sqrt(Temp1); TempMatrix.F2 = Math.sqrt(Temp2); TempMatrix.F3 = Math.sqrt(Temp3); TempMatrix.Entropy = 0; return TempMatrix; } @Override public void extract(BufferedImage bimg) { bimg = ImageUtils.get8BitRGBImage(bimg); histogram = Apply(bimg); } /** * Creates a small byte array from an FCTH descriptor. * Stuffs 2 numbers into one byte and omits all but 1 of the trailing 0's. * * @return */ @Override public byte[] getByteArrayRepresentation() { // find out the position of the beginning of the trailing zeros. int position = -1; for (int i = 0; i < histogram.length; i++) { if (position == -1) { if (histogram[i] == 0) position = i; } else if (position > -1) { if (histogram[i] != 0) position = -1; } } if (position < 0) position = histogram.length - 1; // find out the actual length. two values in one byte, so we have to round up. int length = (position + 1) / 2; if ((position + 1) % 2 == 1) length = position / 2 + 1; byte[] result = new byte[length]; for (int i = 0; i < result.length; i++) { tmp = ((int) (histogram[(i << 1)] * 2)) << 4; tmp = (tmp | ((int) (histogram[(i << 1) + 1] * 2))); result[i] = (byte) (tmp - 128); } return result; } /** * Reads descriptor from a byte array. Much faster than the String based method. * * @param in byte array from corresponding method * @see CEDD#getByteArrayRepresentation */ @Override public void setByteArrayRepresentation(byte[] in) { setByteArrayRepresentation(in, 0, in.length); } @Override public void setByteArrayRepresentation(byte[] in, int offset, int length) { if (length << 1 < histogram.length) Arrays.fill(histogram, length << 1, histogram.length, 0); for (int i = offset; i < offset + length; i++) { tmp = in[i] + 128; histogram[((i - offset) << 1) + 1] = ((double) (tmp & 0x000F)) / 2d; histogram[(i - offset) << 1] = ((double) (tmp >> 4)) / 2d; } } @Override public double[] getFeatureVector() { return histogram; } @Override public double getDistance(LireFeature vd) { // added by mlux //TODO Tanimoto MetricUtils // Check if instance of the right class ... if (!(vd instanceof FCTH)) throw new UnsupportedOperationException("Wrong descriptor."); // casting ... FCTH ch = (FCTH) vd; // check if parameters are fitting ... if ((ch.histogram.length != histogram.length)) throw new UnsupportedOperationException("Histogram lengths or color spaces do not match"); // Tanimoto coefficient distResult = 0; distTmp1 = 0; distTmp2 = 0; distTmpCnt1 = 0; distTmpCnt2 = 0; distTmpCnt3 = 0; for (int i = 0; i < ch.histogram.length; i++) { distTmp1 += ch.histogram[i]; distTmp2 += histogram[i]; } if (distTmp1 == 0 && distTmp2 == 0) return 0d; if (distTmp1 == 0 || distTmp2 == 0) return 100d; for (int i = 0; i < ch.histogram.length; i++) { distTmpCnt1 += (ch.histogram[i] / distTmp1) * (histogram[i] / distTmp2); distTmpCnt2 += (histogram[i] / distTmp2) * (histogram[i] / distTmp2); distTmpCnt3 += (ch.histogram[i] / distTmp1) * (ch.histogram[i] / distTmp1); } distResult = (100 - 100 * (distTmpCnt1 / (distTmpCnt2 + distTmpCnt3 - distTmpCnt1))); return distResult; } // public String getStringRepresentation() { // // FCTH is quantized to 3bits / bin ... therefore ints are enough. // StringBuilder sb = new StringBuilder(histogram.length * 2 + 25); // sb.append("fcth"); // sb.append(' '); // sb.append(histogram.length); // sb.append(' '); // for (double aData : histogram) { // sb.append((int) aData); // sb.append(' '); // } // return sb.toString().trim(); // } // // public void setStringRepresentation(String s) { // StringTokenizer st = new StringTokenizer(s); // if (!st.nextToken().equals("fcth")) // throw new UnsupportedOperationException("This is not a FCTH descriptor."); // histogram = new double[Integer.parseInt(st.nextToken())]; // for (int i = 0; i < histogram.length; i++) { // if (!st.hasMoreTokens()) // throw new IndexOutOfBoundsException("Too few numbers in string representation."); // histogram[i] = Integer.parseInt(st.nextToken()); // } // } @Override public String toString() { StringBuilder sb = new StringBuilder(histogram.length * 2 + 25); for (double aData : histogram) { sb.append((int) aData); sb.append(' '); } return "FCTH{" + sb.toString().trim() + "}"; } @Override public String getFeatureName() { return "FCTH"; } @Override public String getFieldName() { return DocumentBuilder.FIELD_NAME_FCTH; } }