/* * This file is part of the LIRE project: http://lire-project.net * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval – * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 * * Copyright statement: * ==================== * (c) 2002-2013 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire, http://www.lire-project.net * * Updated: 11.07.13 10:36 */ package net.semanticmetadata.lire.imageanalysis.features.global.joint; import net.semanticmetadata.lire.builders.DocumentBuilder; import net.semanticmetadata.lire.imageanalysis.features.GlobalFeature; import net.semanticmetadata.lire.imageanalysis.features.LireFeature; import net.semanticmetadata.lire.utils.ImageUtils; import net.semanticmetadata.lire.utils.MetricsUtils; import java.awt.image.BufferedImage; import java.awt.image.WritableRaster; /** * A simple implementation of a joint opponent histogram combining 64-bin RGB and pixel rank. * * @author Mathias Lux, mathias@juggle.at */ public class RankAndOpponent implements GlobalFeature { private int[] tmpIntensity = new int[1]; final double sq2 = Math.sqrt(2d); final double sq6 = Math.sqrt(3d); final double sq3 = Math.sqrt(6d); double[] descriptor; double o1, o2, o3; int tmp; public RankAndOpponent() { descriptor = new double[64 * 9]; } @Override public void extract(BufferedImage bimg) { // extract: int[][] histogram = new int[64][9]; for (int i = 0; i < histogram.length; i++) { for (int j = 0; j < histogram[i].length; j++) histogram[i][j] = 0; } WritableRaster grey = ImageUtils.getGrayscaleImage(bimg).getRaster(); WritableRaster raster = bimg.getRaster(); int[] px = new int[3]; int[] intens = new int[1]; int colorPos; for (int x = 1; x < raster.getWidth() - 1; x++) { for (int y = 1; y < raster.getHeight() - 1; y++) { raster.getPixel(x, y, px); o1 = (double) (px[0] - px[1]) / sq2; o2 = (double) (px[0] + px[1] - 2 * px[2]) / sq6; o3 = (double) (px[0] + px[1] + px[2]) / sq3; // Normalize ... easier to handle. o1 = (o1 + 255d / sq2) / (510d / sq2); o2 = (o2 + 510d / sq6) / (1020d / sq6); o3 = o3 / (3d * 255d / sq3); // get the array position. colorPos = (int) Math.min(Math.floor(o1 * 4d), 3d) + (int) Math.min(Math.floor(o2 * 4d), 3d) * 4 + (int) Math.min(3d, Math.floor(o3 * 4d)) * 4 * 4; int rank = 0; grey.getPixel(x, y, intens); if (getIntensity(x - 1, y - 1, grey) > intens[0]) rank++; if (getIntensity(x, y - 1, grey) > intens[0]) rank++; if (getIntensity(x + 1, y - 1, grey) > intens[0]) rank++; if (getIntensity(x - 1, y + 1, grey) > intens[0]) rank++; if (getIntensity(x, y + 1, grey) > intens[0]) rank++; if (getIntensity(x + 1, y + 1, grey) > intens[0]) rank++; if (getIntensity(x - 1, y, grey) > intens[0]) rank++; if (getIntensity(x + 1, y, grey) > intens[0]) rank++; histogram[colorPos][rank]++; } } // normalize with max norm & quantize to [0,7]: descriptor = new double[64 * 9]; double max = 0; for (int i = 0; i < histogram.length; i++) { for (int j = 0; j < histogram[i].length; j++) { max = Math.max(histogram[i][j], max); } } for (int i = 0; i < histogram.length; i++) { for (int j = 0; j < histogram[i].length; j++) { descriptor[i + 64 * j] = Math.floor(7d * (histogram[i][j] / max)); } } } private int getIntensity(int x, int y, WritableRaster grey) { grey.getPixel(x, y, tmpIntensity); return tmpIntensity[0]; } // public String getStringRepresentation() { // StringBuilder sb = new StringBuilder(descriptor.length * 2 + 25); // sb.append("jophist"); // sb.append(' '); // sb.append(descriptor.length); // sb.append(' '); // for (double aData : descriptor) { // sb.append((int) aData); // sb.append(' '); // } // return sb.toString().trim(); // } // // public void setStringRepresentation(String s) { // StringTokenizer st = new StringTokenizer(s); // if (!st.nextToken().equals("jophist")) // throw new UnsupportedOperationException("This is not a RankAndOpponent descriptor."); // descriptor = new double[Integer.parseInt(st.nextToken())]; // for (int i = 0; i < descriptor.length; i++) { // if (!st.hasMoreTokens()) // throw new IndexOutOfBoundsException("Too few numbers in string representation."); // descriptor[i] = Integer.parseInt(st.nextToken()); // } // // } @Override public byte[] getByteArrayRepresentation() { byte[] result = new byte[descriptor.length/2]; for (int i = 0; i < result.length; i++) { tmp = ((int) (descriptor[(i << 1)] * 2)) << 4; tmp = (tmp | ((int) (descriptor[(i << 1) + 1] * 2))); result[i] = (byte) (tmp-128); } return result; } @Override public void setByteArrayRepresentation(byte[] in) { for (int i = 0; i < in.length; i++) { tmp = in[i]+128; descriptor[(i << 1) +1] = ((double) (tmp & 0x000F))/2d; descriptor[i << 1] = ((double) (tmp >> 4))/2d; } } @Override public void setByteArrayRepresentation(byte[] in, int offset, int length) { for (int i = offset; i < length; i++) { tmp = in[i]+128; descriptor[(i << 1) +1] = ((double) (tmp & 0x000F))/2d; descriptor[i << 1] = ((double) (tmp >> 4))/2d; } } @Override public double[] getFeatureVector() { double[] result = new double[descriptor.length]; for (int i = 0; i < descriptor.length; i++) { result[i] = descriptor[i]; } return result; } @Override public double getDistance(LireFeature feature) { if (!(feature instanceof RankAndOpponent)) throw new UnsupportedOperationException("Wrong descriptor."); return MetricsUtils.jsd(((RankAndOpponent) feature).descriptor, descriptor); } @Override public String getFeatureName() { return "Rank Opponent Joint Histogram"; } @Override public String getFieldName() { return DocumentBuilder.FIELD_NAME_Rank_Opponent; } }