/* * This file is part of the LIRE project: http://lire-project.net * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval – * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 * * Copyright statement: * ==================== * (c) 2002-2013 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire, http://www.lire-project.net * * Updated: 16.01.15 10:26 */ package net.semanticmetadata.lire.imageanalysis.features.global; import net.semanticmetadata.lire.builders.DocumentBuilder; import net.semanticmetadata.lire.imageanalysis.features.GlobalFeature; import net.semanticmetadata.lire.imageanalysis.features.LireFeature; import net.semanticmetadata.lire.imageanalysis.features.global.cedd.*; import net.semanticmetadata.lire.utils.ImageUtils; import net.semanticmetadata.lire.utils.SerializationUtils; import java.awt.image.BufferedImage; import java.awt.image.DataBufferInt; import java.util.Arrays; /** * The CEDD feature was created, implemented and provided by Savvas A. Chatzichristofis<br/> * More information can be found in: Savvas A. Chatzichristofis and Yiannis S. Boutalis, * <i>CEDD: Color and Edge Directivity Descriptor. A Compact * Descriptor for Image Indexing and Retrieval</i>, A. Gasteratos, M. Vincze, and J.K. * Tsotsos (Eds.): ICVS 2008, LNCS 5008, pp. 312-322, 2008. * * @author: Savvas A. Chatzichristofis, savvash@gmail.com */ public class CEDD implements GlobalFeature { private double T0; private double T1; private double T2; private double T3; private boolean Compact = false; // protected double[] data = new double[144]; protected byte[] histogram = new byte[144]; int tmp; // for tanimoto: private double Result, Temp1, Temp2, TempCount1, TempCount2, TempCount3; private CEDD tmpFeature; private double iTmp1, iTmp2; public CEDD(double Th0, double Th1, double Th2, double Th3, boolean CompactDescriptor) { this.T0 = Th0; this.T1 = Th1; this.T2 = Th2; this.T3 = Th3; this.Compact = CompactDescriptor; } public CEDD() { this.T0 = 14d; this.T1 = 0.68d; this.T2 = 0.98d; this.T3 = 0.98d; } // Apply filter // signature changed by mlux @Override public void extract(BufferedImage image) { image = ImageUtils.get8BitRGBImage(image); Fuzzy10Bin Fuzzy10 = new Fuzzy10Bin(false); Fuzzy24Bin Fuzzy24 = new Fuzzy24Bin(false); RGB2HSV HSVConverter = new RGB2HSV(); int[] HSV = new int[3]; double[] Fuzzy10BinResultTable = new double[10]; double[] Fuzzy24BinResultTable = new double[24]; double[] CEDD = new double[144]; int width = image.getWidth(); int height = image.getHeight(); double[][] ImageGrid = new double[width][height]; double[][] PixelCount = new double[2][2]; int[][] ImageGridRed = new int[width][height]; int[][] ImageGridGreen = new int[width][height]; int[][] ImageGridBlue = new int[width][height]; //please double check from here int NumberOfBlocks = -1; if (Math.min(width, height) >= 80) NumberOfBlocks = 1600; if (Math.min(width, height) < 80 && Math.min(width, height) >= 40) NumberOfBlocks = 400; if (Math.min(width, height) < 40) NumberOfBlocks = -1; int Step_X = 2; int Step_Y = 2; if (NumberOfBlocks > 0) { Step_X = (int) Math.floor(width / Math.sqrt(NumberOfBlocks)); Step_Y = (int) Math.floor(height / Math.sqrt(NumberOfBlocks)); if ((Step_X % 2) != 0) { Step_X = Step_X - 1; } if ((Step_Y % 2) != 0) { Step_Y = Step_Y - 1; } } // to here int[] Edges = new int[6]; MaskResults MaskValues = new MaskResults(); Neighborhood PixelsNeighborhood = new Neighborhood(); for (int i = 0; i < 144; i++) { CEDD[i] = 0; } int pixel, r, g, b; // extraction is based on a speedup fix from Michael Riegler & Konstantin Pogorelov BufferedImage image_rgb = new BufferedImage(width, height, BufferedImage.TYPE_INT_BGR); image_rgb.getGraphics().drawImage(image, 0, 0, null); int[] pixels = ((DataBufferInt) image_rgb.getRaster().getDataBuffer()).getData(); for (int x = 0; x < width; x++) { for (int y = 0; y < height; y++) { pixel = pixels[y * width + x]; b = (pixel >> 16) & 0xFF; g = (pixel >> 8) & 0xFF; r = (pixel) & 0xFF; ImageGridRed[x][y] = r; ImageGridGreen[x][y] = g; ImageGridBlue[x][y] = b; ImageGrid[x][y] = (0.114 * b + 0.587 * g + 0.299 * r); } } int[] CororRed = new int[Step_Y * Step_X]; int[] CororGreen = new int[Step_Y * Step_X]; int[] CororBlue = new int[Step_Y * Step_X]; int[] CororRedTemp = new int[Step_Y * Step_X]; int[] CororGreenTemp = new int[Step_Y * Step_X]; int[] CororBlueTemp = new int[Step_Y * Step_X]; int MeanRed, MeanGreen, MeanBlue; //plase double check from here int TempSum = 0; double Max = 0; int TemoMAX_X = Step_X * (int) Math.floor(image.getWidth() >> 1); int TemoMAX_Y = Step_Y * (int) Math.floor(image.getHeight() >> 1); if (NumberOfBlocks > 0) { TemoMAX_X = Step_X * (int) Math.sqrt(NumberOfBlocks); TemoMAX_Y = Step_Y * (int) Math.sqrt(NumberOfBlocks); } //to here for (int y = 0; y < TemoMAX_Y; y += Step_Y) { for (int x = 0; x < TemoMAX_X; x += Step_X) { MeanRed = 0; MeanGreen = 0; MeanBlue = 0; PixelsNeighborhood.Area1 = 0; PixelsNeighborhood.Area2 = 0; PixelsNeighborhood.Area3 = 0; PixelsNeighborhood.Area4 = 0; Edges[0] = -1; Edges[1] = -1; Edges[2] = -1; Edges[3] = -1; Edges[4] = -1; Edges[5] = -1; for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { PixelCount[i][j] = 0; } } TempSum = 0; for (int i = y; i < y + Step_Y; i++) { for (int j = x; j < x + Step_X; j++) { CororRed[TempSum] = ImageGridRed[j][i]; CororGreen[TempSum] = ImageGridGreen[j][i]; CororBlue[TempSum] = ImageGridBlue[j][i]; CororRedTemp[TempSum] = ImageGridRed[j][i]; CororGreenTemp[TempSum] = ImageGridGreen[j][i]; CororBlueTemp[TempSum] = ImageGridBlue[j][i]; TempSum++; if (j < (x + Step_X / 2) && i < (y + Step_Y / 2)) PixelsNeighborhood.Area1 += (ImageGrid[j][i]); if (j >= (x + Step_X / 2) && i < (y + Step_Y / 2)) PixelsNeighborhood.Area2 += (ImageGrid[j][i]); if (j < (x + Step_X / 2) && i >= (y + Step_Y / 2)) PixelsNeighborhood.Area3 += (ImageGrid[j][i]); if (j >= (x + Step_X / 2) && i >= (y + Step_Y / 2)) PixelsNeighborhood.Area4 += (ImageGrid[j][i]); } } PixelsNeighborhood.Area1 = (int) (PixelsNeighborhood.Area1 * (4.0 / (Step_X * Step_Y))); PixelsNeighborhood.Area2 = (int) (PixelsNeighborhood.Area2 * (4.0 / (Step_X * Step_Y))); PixelsNeighborhood.Area3 = (int) (PixelsNeighborhood.Area3 * (4.0 / (Step_X * Step_Y))); PixelsNeighborhood.Area4 = (int) (PixelsNeighborhood.Area4 * (4.0 / (Step_X * Step_Y))); MaskValues.Mask1 = Math.abs(PixelsNeighborhood.Area1 * 2 + PixelsNeighborhood.Area2 * -2 + PixelsNeighborhood.Area3 * -2 + PixelsNeighborhood.Area4 * 2); MaskValues.Mask2 = Math.abs(PixelsNeighborhood.Area1 * 1 + PixelsNeighborhood.Area2 * 1 + PixelsNeighborhood.Area3 * -1 + PixelsNeighborhood.Area4 * -1); MaskValues.Mask3 = Math.abs(PixelsNeighborhood.Area1 * 1 + PixelsNeighborhood.Area2 * -1 + PixelsNeighborhood.Area3 * 1 + PixelsNeighborhood.Area4 * -1); MaskValues.Mask4 = Math.abs(PixelsNeighborhood.Area1 * Math.sqrt(2) + PixelsNeighborhood.Area2 * 0 + PixelsNeighborhood.Area3 * 0 + PixelsNeighborhood.Area4 * -Math.sqrt(2)); MaskValues.Mask5 = Math.abs(PixelsNeighborhood.Area1 * 0 + PixelsNeighborhood.Area2 * Math.sqrt(2) + PixelsNeighborhood.Area3 * -Math.sqrt(2) + PixelsNeighborhood.Area4 * 0); Max = Math.max(MaskValues.Mask1, Math.max(MaskValues.Mask2, Math.max(MaskValues.Mask3, Math.max(MaskValues.Mask4, MaskValues.Mask5)))); MaskValues.Mask1 = MaskValues.Mask1 / Max; MaskValues.Mask2 = MaskValues.Mask2 / Max; MaskValues.Mask3 = MaskValues.Mask3 / Max; MaskValues.Mask4 = MaskValues.Mask4 / Max; MaskValues.Mask5 = MaskValues.Mask5 / Max; int T = -1; if (Max < T0) { Edges[0] = 0; T = 0; } else { T = -1; if (MaskValues.Mask1 > T1) { T++; Edges[T] = 1; } if (MaskValues.Mask2 > T2) { T++; Edges[T] = 2; } if (MaskValues.Mask3 > T2) { T++; Edges[T] = 3; } if (MaskValues.Mask4 > T3) { T++; Edges[T] = 4; } if (MaskValues.Mask5 > T3) { T++; Edges[T] = 5; } } for (int i = 0; i < (Step_Y * Step_X); i++) { MeanRed += CororRed[i]; MeanGreen += CororGreen[i]; MeanBlue += CororBlue[i]; } MeanRed = (int) (MeanRed / (Step_Y * Step_X)); MeanGreen = (int) (MeanGreen / (Step_Y * Step_X)); MeanBlue = (int) (MeanBlue / (Step_Y * Step_X)); HSV = HSVConverter.ApplyFilter(MeanRed, MeanGreen, MeanBlue); if (this.Compact == false) { Fuzzy10BinResultTable = Fuzzy10.ApplyFilter(HSV[0], HSV[1], HSV[2], 2); Fuzzy24BinResultTable = Fuzzy24.ApplyFilter(HSV[0], HSV[1], HSV[2], Fuzzy10BinResultTable, 2); for (int i = 0; i <= T; i++) { for (int j = 0; j < 24; j++) { if (Fuzzy24BinResultTable[j] > 0) CEDD[24 * Edges[i] + j] += Fuzzy24BinResultTable[j]; } } } else { Fuzzy10BinResultTable = Fuzzy10.ApplyFilter(HSV[0], HSV[1], HSV[2], 2); for (int i = 0; i <= T; i++) { for (int j = 0; j < 10; j++) { if (Fuzzy10BinResultTable[j] > 0) CEDD[10 * Edges[i] + j] += Fuzzy10BinResultTable[j]; } } } } } double Sum = 0; for (int i = 0; i < 144; i++) { Sum += CEDD[i]; } for (int i = 0; i < 144; i++) { CEDD[i] = CEDD[i] / Sum; } double qCEDD[]; if (Compact == false) { qCEDD = new double[144]; CEDDQuant quants = new CEDDQuant(); qCEDD = quants.Apply(CEDD); } else { qCEDD = new double[60]; CompactCEDDQuant quants = new CompactCEDDQuant(); qCEDD = quants.Apply(CEDD); } // for (int i = 0; i < qCEDD.length; i++) // System.out.println(qCEDD[i]); // data = qCEDD; // changed by mlux for (int i = 0; i < qCEDD.length; i++) { histogram[i] = (byte) qCEDD[i]; } } @Override public double getDistance(LireFeature vd) { // added by mlux //TODO: Tanimoto in MetricUtils? // Check if instance of the right class ... if (!(vd instanceof CEDD)) throw new UnsupportedOperationException("Wrong descriptor."); // casting ... tmpFeature = (CEDD) vd; // check if parameters are fitting ... if ((tmpFeature.histogram.length != histogram.length)) throw new UnsupportedOperationException("Histogram lengths or color spaces do not match"); // Init Tanimoto coefficient Result = 0; Temp1 = 0; Temp2 = 0; TempCount1 = 0; TempCount2 = 0; TempCount3 = 0; for (int i = 0; i < tmpFeature.histogram.length; i++) { Temp1 += tmpFeature.histogram[i]; Temp2 += histogram[i]; } if (Temp1 == 0 && Temp2 == 0) return 0d; if (Temp1 == 0 || Temp2 == 0) return 100d; for (int i = 0; i < tmpFeature.histogram.length; i++) { iTmp1 = tmpFeature.histogram[i] / Temp1; iTmp2 = histogram[i] / Temp2; TempCount1 += iTmp1 * iTmp2; TempCount2 += iTmp2 * iTmp2; TempCount3 += iTmp1 * iTmp1; } Result = (100 - 100 * (TempCount1 / (TempCount2 + TempCount3 - TempCount1))); return Result; } @SuppressWarnings("unused") private double scalarMult(double[] a, double[] b) { double sum = 0.0; for (int i = 0; i < a.length; i++) { sum += a[i] * b[i]; } return sum; } public byte[] getByteHistogram() { return histogram; } // public String getStringRepresentation() { // added by mlux // StringBuilder sb = new StringBuilder(histogram.length * 2 + 25); // sb.append("cedd"); // sb.append(' '); // sb.append(histogram.length); // sb.append(' '); // for (byte aData : histogram) { // sb.append((int) aData); // sb.append(' '); // } // return sb.toString().trim(); // } // // public void setStringRepresentation(String s) { // added by mlux // StringTokenizer st = new StringTokenizer(s); // if (!st.nextToken().equals("cedd")) // throw new UnsupportedOperationException("This is not a CEDD descriptor."); // for (int i = 0; i < histogram.length; i++) { // if (!st.hasMoreTokens()) // throw new IndexOutOfBoundsException("Too few numbers in string representation."); // histogram[i] = (byte) Integer.parseInt(st.nextToken()); // } // // } /** * Provides a much faster way of serialization. * * @return a byte array that can be read with the corresponding method. * @see CEDD#setByteArrayRepresentation(byte[]) */ @Override public byte[] getByteArrayRepresentation() { // find out the position of the beginning of the trailing zeros. int position = -1; for (int i = 0; i < histogram.length; i++) { if (position == -1) { if (histogram[i] == 0) position = i; } else if (position > -1) { if (histogram[i] != 0) position = -1; } } if (position < 0) position = 143; // find out the actual length. two values in one byte, so we have to round up. int length = (position + 1) / 2; if ((position + 1) % 2 == 1) length = position / 2 + 1; byte[] result = new byte[length]; for (int i = 0; i < result.length; i++) { tmp = ((int) (histogram[(i << 1)])) << 4; tmp = (tmp | ((int) (histogram[(i << 1) + 1]))); result[i] = (byte) (tmp - 128); } return result; } /** * Reads descriptor from a byte array. Much faster than the String based method. * * @param in byte array from corresponding method * @see CEDD#getByteArrayRepresentation */ @Override public void setByteArrayRepresentation(byte[] in) { setByteArrayRepresentation(in, 0, in.length); } @Override public void setByteArrayRepresentation(byte[] in, int offset, int length) { if ((length << 1) < histogram.length) Arrays.fill(histogram, length << 1, histogram.length, (byte) 0); for (int i = offset; i < offset + length; i++) { tmp = in[i] + 128; histogram[((i - offset) << 1) + 1] = ((byte) (tmp & 0x000F)); histogram[(i - offset) << 1] = ((byte) (tmp >> 4)); } } @Override public double[] getFeatureVector() { return SerializationUtils.castToDoubleArray(histogram); } @Override public String getFeatureName() { return "CEDD"; } @Override public String getFieldName() { return DocumentBuilder.FIELD_NAME_CEDD; } @Override public String toString() { StringBuilder sb = new StringBuilder(histogram.length * 2 + 25); for (byte aData : histogram) { sb.append((int) aData); sb.append(' '); } return "CEDD{" + sb.toString().trim() + "}"; } }