/*
* This file is part of the LIRE project: http://lire-project.net
* LIRE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LIRE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LIRE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* We kindly ask you to refer the any or one of the following publications in
* any publication mentioning or employing Lire:
*
* Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval -
* An Extensible Java CBIR Library. In proceedings of the 16th ACM International
* Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008
* URL: http://doi.acm.org/10.1145/1459359.1459577
*
* Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the
* 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale,
* Arizona, USA, 2011
* URL: http://dl.acm.org/citation.cfm?id=2072432
*
* Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE
* Morgan & Claypool, 2013
* URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025
*/
package net.semanticmetadata.lire.aggregators;
import net.semanticmetadata.lire.classifiers.Cluster;
import net.semanticmetadata.lire.imageanalysis.features.LocalFeature;
import net.semanticmetadata.lire.utils.SerializationUtils;
import java.util.Arrays;
import java.util.List;
/**
* General class creating histograms based on BOVW model, given the list of local features and the codebook.
* Created by Nektarios on 03/06/2015.
*
* @author Nektarios Anagnostopoulos, nek.anag@gmail.com
* (c) 2015 by Nektarios Anagnostopoulos
*/
public class BOVW extends AbstractAggregator {
private double[] histogram;
public BOVW() { }
/**
* Given a list of features and a codebook, {@link BOVW#createVectorRepresentation(List, Cluster[])} aggregates
* the features to create the vector representation according to the BOVW model.
* @param listOfLocalFeatures is the list of features.
* @param clustersArray is the codebook.
*/
@Override
public void createVectorRepresentation(List<? extends LocalFeature> listOfLocalFeatures, Cluster[] clustersArray) {
histogram = new double[clustersArray.length];
Arrays.fill(histogram, 0d);
// find the appropriate cluster for each feature:
for (LocalFeature listOfLocalFeature : listOfLocalFeatures) {
histogram[clusterForFeature(listOfLocalFeature.getFeatureVector(), clustersArray)]++;
}
// quantize(histogram);
}
/**
* Returns the vector representation in byte[] format.
* @return the vector representation as a byte array.
*/
@Override
public byte[] getByteVectorRepresentation() {
return SerializationUtils.toByteArray(histogram);
}
/**
* Returns the vector representation in string format, according to the {@link BOVW#arrayToVisualWordString(double[])} method.
* @return the vector representation as string.
*/
@Override
public String getStringVectorRepresentation() { return arrayToVisualWordString(histogram); }
/**
* Returns the vector representation in double[] format.
* @return the vector representation as a double array.
*/
@Override
public double[] getVectorRepresentation() { return histogram; }
@Override
public String getFieldName() {
return Aggregator.FIELD_NAME_BOVW;
}
/**
* Returns the vector representation in string format.
* @return the vector representation as string.
*/
public String toString() { return SerializationUtils.toString(histogram);}
private void quantize(double[] data) {
double max = 0;
for (double next : data) {
max = Math.max(max, next);
}
for (int i = 0; i < data.length; i++) {
data[i] = (int) Math.floor((data[i] * 128d) / max);
}
}
private String arrayToVisualWordString(double[] data) {
StringBuilder sb = new StringBuilder(1024); //TODO: are 1024 enough??
int visualWordIndex;
for (int i = 0; i < data.length; i++) {
visualWordIndex = (int) data[i];
for (int j = 0; j < visualWordIndex; j++) {
// sb.append('v');
sb.append(Integer.toHexString(i));
sb.append(' ');
}
}
return sb.toString();
}
}