/* * This file is part of the LIRE project: http://www.semanticmetadata.net/lire * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval – * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 * * Copyright statement: * -------------------- * (c) 2002-2013 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire, http://www.lire-project.net */ package net.semanticmetadata.lire.imageanalysis.mser.fourier.utils; public class Complex { private final double re; // the real part private final double im; // the imaginary part // create a new object with the given real and imaginary parts public Complex(double real, double imag) { re = real; im = imag; } // return a string representation of the invoking Complex object public String toString() { if (im == 0) { return re + ""; } if (re == 0) { return im + "i"; } if (im < 0) { return re + " - " + (-im) + "i"; } return re + " + " + im + "i"; } // return abs/modulus/magnitude and angle/phase/argument public double abs() { return Math.hypot(re, im); } // Math.sqrt(re*re + im*im) public double phase() { return Math.atan2(im, re); } // between -pi and pi // return a new Complex object whose value is (this + b) public Complex plus(Complex b) { Complex a = this; // invoking object double real = a.re + b.re; double imag = a.im + b.im; return new Complex(real, imag); } // return a new Complex object whose value is (this - b) public Complex minus(Complex b) { Complex a = this; double real = a.re - b.re; double imag = a.im - b.im; return new Complex(real, imag); } // return a new Complex object whose value is (this * b) public Complex times(Complex b) { Complex a = this; double real = a.re * b.re - a.im * b.im; double imag = a.re * b.im + a.im * b.re; return new Complex(real, imag); } // scalar multiplication // return a new object whose value is (this * alpha) public Complex times(double alpha) { return new Complex(alpha * re, alpha * im); } // return a new Complex object whose value is the conjugate of this public Complex conjugate() { return new Complex(re, -im); } // return a new Complex object whose value is the reciprocal of this public Complex reciprocal() { double scale = re * re + im * im; return new Complex(re / scale, -im / scale); } // return the real or imaginary part public double re() { return re; } public double im() { return im; } // return a / b public Complex divides(Complex b) { Complex a = this; return a.times(b.reciprocal()); } // return a new Complex object whose value is the complex exponential of this public Complex exp() { return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im)); } // return a new Complex object whose value is the complex sine of this public Complex sin() { return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im)); } // return a new Complex object whose value is the complex cosine of this public Complex cos() { return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im)); } // return a new Complex object whose value is the complex tangent of this public Complex tan() { return sin().divides(cos()); } // a static version of plus public static Complex plus(Complex a, Complex b) { double real = a.re + b.re; double imag = a.im + b.im; Complex sum = new Complex(real, imag); return sum; } // sample client for testing public static void main(String[] args) { Complex a = new Complex(5.0, 6.0); Complex b = new Complex(-3.0, 4.0); System.out.println("a = " + a); System.out.println("b = " + b); System.out.println("Re(a) = " + a.re()); System.out.println("Im(a) = " + a.im()); System.out.println("b + a = " + b.plus(a)); System.out.println("a - b = " + a.minus(b)); System.out.println("a * b = " + a.times(b)); System.out.println("b * a = " + b.times(a)); System.out.println("a / b = " + a.divides(b)); System.out.println("(a / b) * b = " + a.divides(b).times(b)); System.out.println("conj(a) = " + a.conjugate()); System.out.println("|a| = " + a.abs()); System.out.println("tan(a) = " + a.tan()); } }