/* * This file is part of the LIRE project: http://www.semanticmetadata.net/lire * LIRE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRE; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the any or one of the following publications in * any publication mentioning or employing Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval – * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * URL: http://doi.acm.org/10.1145/1459359.1459577 * * Lux Mathias. Content Based Image Retrieval with LIRE. In proceedings of the * 19th ACM International Conference on Multimedia, pp. 735-738, Scottsdale, * Arizona, USA, 2011 * URL: http://dl.acm.org/citation.cfm?id=2072432 * * Mathias Lux, Oge Marques. Visual Information Retrieval using Java and LIRE * Morgan & Claypool, 2013 * URL: http://www.morganclaypool.com/doi/abs/10.2200/S00468ED1V01Y201301ICR025 * * Copyright statement: * ==================== * (c) 2002-2013 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire, http://www.lire-project.net * * Updated: 11.07.13 10:34 */ package net.semanticmetadata.lire.imageanalysis; import net.semanticmetadata.lire.utils.ImageUtils; import java.awt.*; import java.awt.image.BufferedImage; import java.awt.image.ConvolveOp; import java.awt.image.Kernel; import java.awt.image.WritableRaster; /** * This class computes and quantifies several basic image features like contrast, overall sharpness etc. * * @author Thomas Pairitsch * @deprecated other features replace the functionality of this one, do not use! */ public class BasicFeatures implements LireFeature { //Downscaling private static final int SIZE = 1024; //For HueCount private static final int BINS = 20; private static final float threshold = 0.05f; //Calculated Values //private float value=0; private float brightness = 0; private float clipping = 0; private float contrast = 0; private float hueCount = 0; private float saturation = 0; private float complexity = 0; private float skew = 0; private float energy = 0; /** * Analysis and calculates the quality score for the image. * * @param */ public void extract(BufferedImage bimg) { BufferedImage sml = ImageUtils.scaleImage(bimg, SIZE); WritableRaster raster = sml.getRaster(); int bands = raster.getNumBands(); //extracted Features int clipB = 0, clipD = 0; float average = 0; float sum = 0; int[] hist = new int[BINS]; int[] hist256 = new int[256]; int max = 0; if (bands == 3) { int w = raster.getWidth(); int h = raster.getHeight(); int numPixels = w * h; int[] pixels = raster.getPixels(0, 0, w, h, new int[numPixels * bands]); int[] gPixels = new int[numPixels]; for (int i = 0; i < w * h * bands; i += bands) { int grey = (pixels[i] + pixels[i + 1] + pixels[i + 2]) / 3; float[] hsv = new float[3]; //Brightness brightness += (float) grey / 255; //Clipping int cornerSum = pixels[0] + pixels[1] + pixels[2] + pixels[w * h * 3 - 3] + pixels[w * h * 3 - 2] + pixels[w * h * 3 - 1]; if (!(cornerSum == 0 || cornerSum == 255 * 6)) { if (grey == 255) { clipB += 1; } else if (grey == 0) { clipD += 1; } } //Contrast gPixels[i / 3] = grey; sum += grey; //Energy hist256[grey]++; //HueCount&&Saturation Color.RGBtoHSB(pixels[i], pixels[i + 1], pixels[i + 2], hsv); if (hsv[2] > 0.15 && hsv[2] < 0.95 && hsv[1] > 0.2) { hist[(int) (hsv[0] * 20)]++; } saturation += hsv[1]; } complexity = getComplexity(bimg); clipping = (float) (clipB + clipD / 2) / numPixels; brightness /= numPixels; average = sum / numPixels; float dev = stdDeviation(gPixels, average); contrast = dev / 128f; //Huecount for (int i = 0; i < BINS; i++) { if (hist[i] > max) { max = hist[i]; } } max *= threshold; for (int i = 0; i < BINS; i++) { if (hist[i] > max) { hueCount++; } } hueCount /= BINS; //Energy for (int i = 0; i < 256; i++) { float temp = ((float) hist256[i]) / (float) (w * h); energy += temp * temp; } //Skew for (int i = 0; i < 256; i++) { float temp = ((float) hist256[i]) / (float) (w * h); float temp2 = (i - average); skew += temp2 * temp2 * temp2 * temp; } skew /= dev * dev * dev; saturation /= numPixels; } //value = evaluate(brightness,contrast,hueCount,saturation,complexity,clipping,energy,skew ); //System.out.println("DEBUG: {"+brightness+","+contrast+","+hueCount+","+saturation+","+complexity+","+clipping+","+energy+","+ skew+"}"); } public byte[] getByteArrayRepresentation() { throw new UnsupportedOperationException("Not implemented!"); } public void setByteArrayRepresentation(byte[] in) { throw new UnsupportedOperationException("Not implemented!"); } public void setByteArrayRepresentation(byte[] in, int offset, int length) { throw new UnsupportedOperationException("Not implemented!"); } public double[] getDoubleHistogram() { double[] result = new double[8]; result[0] = brightness; result[1] = clipping; result[2] = contrast; result[3] = hueCount; result[4] = saturation; result[5] = complexity; result[6] = skew; result[7] = energy; return result; } /* private float evaluate(float brightness, float contrast, float hueCount, float saturation, float complexity, float clipping,float energy, float skew) { QPrediction qPred = new QPrediction(); try { qPred = WekaQuality.predictQuality(new float[]{brightness,contrast,hueCount,saturation,complexity,clipping,energy,skew}); } catch (Exception e) { System.err.println("Could not predict value, setting quality=0"); e.printStackTrace(); } return qPred.prGood; } */ private float getComplexity(BufferedImage img) { //Uses its own resizing method to remove color in the same step BufferedImage sml = new BufferedImage(SIZE, SIZE, BufferedImage.TYPE_BYTE_GRAY); sml.getGraphics().drawImage(img, 0, 0, SIZE, SIZE, null); float ret = 0; int w = sml.getWidth(); int h = sml.getHeight(); Kernel laplace = new Kernel(3, 3, new float[]{1, 1, 1, 1, -8, 1, 1, 1, 1}); ConvolveOp filter = new ConvolveOp(laplace); BufferedImage dest = filter.createCompatibleDestImage(sml, null); filter.filter(sml, dest); WritableRaster data = dest.getRaster(); int[] pixels = data.getPixels(0, 0, w, h, new int[w * h]); int sum = 0; for (int i = 0; i < w; i++) { for (int j = 0; j < h; j++) { int temp = pixels[i + j * w]; sum += temp; } } ret = (float) sum / (w * h * 256); if (ret < 0.01) { ret = 1; } return ret; } private float stdDeviation(int[] input, float mean) { float sum = 0; for (int i : input) { float temp = i - mean; sum += temp * temp; } return (float) Math.sqrt(sum / (input.length - 1)); } public float getDistance(LireFeature arg0) { if (!(arg0 instanceof BasicFeatures)) throw new UnsupportedOperationException("Wrong descriptor."); BasicFeatures in = (BasicFeatures) arg0; float tmp = brightness - in.brightness; float dst = tmp * tmp; tmp = clipping - in.clipping; dst += tmp * tmp; tmp = contrast - in.contrast; dst += tmp * tmp; tmp = hueCount - in.hueCount; dst += tmp * tmp; tmp = saturation - in.saturation; dst += tmp * tmp; tmp = complexity - in.complexity; dst += tmp * tmp; tmp = skew - in.skew; dst += tmp * tmp; tmp = energy - in.energy; dst += tmp * tmp; return (float) Math.sqrt(dst); } public String getStringRepresentation() { return brightness + " " + clipping + " " + contrast + " " + hueCount + " " + saturation + " " + complexity + " " + skew + " " + energy; } public void setStringRepresentation(String arg0) { String[] values = arg0.split(" "); brightness = Float.parseFloat(values[0]); clipping = Float.parseFloat(values[1]); contrast = Float.parseFloat(values[2]); hueCount = Float.parseFloat(values[3]); saturation = Float.parseFloat(values[4]); complexity = Float.parseFloat(values[5]); skew = Float.parseFloat(values[6]); energy = Float.parseFloat(values[7]); } @Override public String getFeatureName() { return "BasicFeatures"; } @Override public String getFieldName() { return "f_baf"; } }