/**
* The MIT License
* Copyright (c) 2014-2016 Ilkka Seppälä
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package com.iluwatar.reader.writer.lock;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.stream.IntStream;
/**
*
* In a multiple thread applications, the threads may try to synchronize the shared resources
* regardless of read or write operation. It leads to a low performance especially in a "read more
* write less" system as indeed the read operations are thread-safe to another read operation.
* <p>
* Reader writer lock is a synchronization primitive that try to resolve this problem. This pattern
* allows concurrent access for read-only operations, while write operations require exclusive
* access. This means that multiple threads can read the data in parallel but an exclusive lock is
* needed for writing or modifying data. When a writer is writing the data, all other writers or
* readers will be blocked until the writer is finished writing.
*
* <p>
* This example use two mutex to demonstrate the concurrent access of multiple readers and writers.
*
*
* @author hongshuwei@gmail.com
*/
public class App {
private static final Logger LOGGER = LoggerFactory.getLogger(App.class);
/**
* Program entry point
*
* @param args command line args
*/
public static void main(String[] args) {
ExecutorService executeService = Executors.newFixedThreadPool(10);
ReaderWriterLock lock = new ReaderWriterLock();
// Start 5 readers
IntStream.range(0, 5)
.forEach(i -> executeService.submit(new Reader("Reader " + i, lock.readLock())));
// Start 5 writers
IntStream.range(0, 5)
.forEach(i -> executeService.submit(new Writer("Writer " + i, lock.writeLock())));
// In the system console, it can see that the read operations are executed concurrently while
// write operations are exclusive.
executeService.shutdown();
try {
executeService.awaitTermination(5, TimeUnit.SECONDS);
} catch (InterruptedException e) {
LOGGER.error("Error waiting for ExecutorService shutdown");
}
}
}