package org.deeplearning4j.parallelism;
import org.deeplearning4j.api.storage.StatsStorage;
import org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator;
import org.deeplearning4j.earlystopping.EarlyStoppingConfiguration;
import org.deeplearning4j.earlystopping.EarlyStoppingModelSaver;
import org.deeplearning4j.earlystopping.EarlyStoppingResult;
import org.deeplearning4j.earlystopping.saver.InMemoryModelSaver;
import org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator;
import org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition;
import org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.Updater;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.ui.api.UIServer;
import org.deeplearning4j.ui.stats.StatsListener;
import org.deeplearning4j.ui.storage.InMemoryStatsStorage;
import org.junit.Ignore;
import org.junit.Test;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import static org.junit.Assert.*;
public class TestParallelEarlyStoppingUI {
@Test
@Ignore //To be run manually
public void testParallelStatsListenerCompatibility() throws Exception {
UIServer uiServer = UIServer.getInstance();
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.updater(Updater.SGD).weightInit(WeightInit.XAVIER).list()
.layer(0, new DenseLayer.Builder().nIn(4).nOut(3).build())
.layer(1, new OutputLayer.Builder().nIn(3).nOut(3)
.lossFunction(LossFunctions.LossFunction.MCXENT).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
// it's important that the UI can report results from parallel training
// there's potential for StatsListener to fail if certain properties aren't set in the model
StatsStorage statsStorage = new InMemoryStatsStorage();
net.setListeners(new StatsListener(statsStorage));
uiServer.attach(statsStorage);
DataSetIterator irisIter = new IrisDataSetIterator(50, 500);
EarlyStoppingModelSaver<MultiLayerNetwork> saver = new InMemoryModelSaver<>();
EarlyStoppingConfiguration<MultiLayerNetwork> esConf =
new EarlyStoppingConfiguration.Builder<MultiLayerNetwork>()
.epochTerminationConditions(new MaxEpochsTerminationCondition(500))
.scoreCalculator(new DataSetLossCalculator(irisIter, true))
.evaluateEveryNEpochs(2).modelSaver(saver).build();
IEarlyStoppingTrainer<MultiLayerNetwork> trainer =
new EarlyStoppingParallelTrainer<>(esConf, net, irisIter, null, 3, 6, 2);
EarlyStoppingResult<MultiLayerNetwork> result = trainer.fit();
System.out.println(result);
assertEquals(EarlyStoppingResult.TerminationReason.EpochTerminationCondition, result.getTerminationReason());
}
}