/*- * * * Copyright 2016 Skymind,Inc. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * */ package org.deeplearning4j.nn.conf.graph; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import org.deeplearning4j.nn.conf.InputPreProcessor; import org.deeplearning4j.nn.conf.NeuralNetConfiguration; import org.deeplearning4j.nn.conf.inputs.InputType; import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException; import org.deeplearning4j.nn.graph.ComputationGraph; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.Arrays; /** * LayerVertex is a GraphVertex with a neural network Layer (and, optionally an {@link InputPreProcessor}) in it * * @author Alex Black */ @NoArgsConstructor @Data @EqualsAndHashCode(callSuper = false) public class LayerVertex extends GraphVertex { private NeuralNetConfiguration layerConf; private InputPreProcessor preProcessor; //Set outputVertex to true when Layer is an OutputLayer, OR For use in specialized situations like reinforcement learning // For RL situations, this Layer insn't an OutputLayer, but is the last layer in a graph, that gets its error/epsilon // passed in externally private boolean outputVertex; public LayerVertex(NeuralNetConfiguration layerConf, InputPreProcessor preProcessor) { this.layerConf = layerConf; this.preProcessor = preProcessor; } public InputPreProcessor getPreProcessor() { return this.preProcessor; } @Override public GraphVertex clone() { return new LayerVertex(layerConf.clone(), (preProcessor != null ? preProcessor.clone() : null)); } @Override public boolean equals(Object o) { if (!(o instanceof LayerVertex)) return false; LayerVertex lv = (LayerVertex) o; if (!layerConf.equals(lv.layerConf)) return false; if (preProcessor == null && lv.preProcessor != null || preProcessor != null && lv.preProcessor == null) return false; return preProcessor == null || preProcessor.equals(lv.preProcessor); } @Override public int hashCode() { return layerConf.hashCode() ^ (preProcessor != null ? preProcessor.hashCode() : 0); } @Override public int numParams(boolean backprop) { return layerConf.getLayer().initializer().numParams(layerConf); } @Override public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx, INDArray paramsView, boolean initializeParams) { //Now, we need to work out if this vertex is an output vertex or not... boolean isOutput = graph.getConfiguration().getNetworkOutputs().contains(name); org.deeplearning4j.nn.api.Layer layer = layerConf.getLayer().instantiate(layerConf, null, idx, paramsView, initializeParams); return new org.deeplearning4j.nn.graph.vertex.impl.LayerVertex(graph, name, idx, layer, preProcessor, isOutput); } @Override public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException { if (vertexInputs.length != 1) { throw new InvalidInputTypeException( "LayerVertex expects exactly one input. Got: " + Arrays.toString(vertexInputs)); } //Assume any necessary preprocessors have already been added InputType afterPreprocessor; if (preProcessor == null) afterPreprocessor = vertexInputs[0]; else afterPreprocessor = preProcessor.getOutputType(vertexInputs[0]); return layerConf.getLayer().getOutputType(layerIndex, afterPreprocessor); } }