package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.params.EmptyParamInitializer;
import org.deeplearning4j.optimize.api.IterationListener;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Collection;
import java.util.Map;
/**
*/
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class ActivationLayer extends FeedForwardLayer {
private ActivationLayer(Builder builder) {
super(builder);
}
@Override
public ActivationLayer clone() {
ActivationLayer clone = (ActivationLayer) super.clone();
return clone;
}
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection<IterationListener> iterationListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams) {
org.deeplearning4j.nn.layers.ActivationLayer ret = new org.deeplearning4j.nn.layers.ActivationLayer(conf);
ret.setListeners(iterationListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map<String, INDArray> paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return EmptyParamInitializer.getInstance();
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null)
throw new IllegalStateException("Invalid input type: null for layer name \"" + getLayerName() + "\"");
return inputType;
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
//No input preprocessor required for any input
return null;
}
@Override
public double getL1ByParam(String paramName) {
//Not applicable
return 0;
}
@Override
public double getL2ByParam(String paramName) {
//Not applicable
return 0;
}
@Override
public boolean isPretrainParam(String paramName) {
throw new UnsupportedOperationException("Activation layer does not contain parameters");
}
@Override
public double getLearningRateByParam(String paramName) {
//Not applicable
return 0;
}
@Override
public void setNIn(InputType inputType, boolean override) {
//No op
}
@AllArgsConstructor
public static class Builder extends FeedForwardLayer.Builder<Builder> {
@Override
@SuppressWarnings("unchecked")
public ActivationLayer build() {
return new ActivationLayer(this);
}
}
}