/*- * * * Copyright 2016 Skymind,Inc. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * */ package org.deeplearning4j.nn.conf.graph; import lombok.Data; import lombok.EqualsAndHashCode; import lombok.NoArgsConstructor; import org.deeplearning4j.nn.conf.InputPreProcessor; import org.deeplearning4j.nn.conf.inputs.InputType; import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException; import org.deeplearning4j.nn.graph.ComputationGraph; import org.nd4j.linalg.api.ndarray.INDArray; /** PreprocessorVertex is a simple adaptor class that allows a {@link InputPreProcessor} to be used in a ComputationGraph * GraphVertex, without it being associated with a layer. * @author Alex Black */ @NoArgsConstructor @Data @EqualsAndHashCode(callSuper = false) public class PreprocessorVertex extends GraphVertex { private InputPreProcessor preProcessor; /** * @param preProcessor The input preprocessor */ public PreprocessorVertex(InputPreProcessor preProcessor) { this.preProcessor = preProcessor; } @Override public GraphVertex clone() { return new PreprocessorVertex(preProcessor.clone()); } @Override public boolean equals(Object o) { if (!(o instanceof PreprocessorVertex)) return false; return ((PreprocessorVertex) o).preProcessor.equals(preProcessor); } @Override public int hashCode() { return preProcessor.hashCode(); } @Override public int numParams(boolean backprop) { return 0; } @Override public org.deeplearning4j.nn.graph.vertex.GraphVertex instantiate(ComputationGraph graph, String name, int idx, INDArray paramsView, boolean initializeParams) { return new org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex(graph, name, idx, preProcessor); } @Override public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException { if (vertexInputs.length != 1) throw new InvalidInputTypeException("Invalid input: Preprocessor vertex expects " + "exactly one input"); return preProcessor.getOutputType(vertexInputs[0]); } }