/*- * * * Copyright 2016 Skymind,Inc. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * */ package org.deeplearning4j.nn.graph.vertex.impl; import org.deeplearning4j.berkeley.Pair; import org.deeplearning4j.nn.api.Layer; import org.deeplearning4j.nn.api.MaskState; import org.deeplearning4j.nn.gradient.Gradient; import org.deeplearning4j.nn.graph.ComputationGraph; import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex; import org.deeplearning4j.nn.graph.vertex.VertexIndices; import org.nd4j.linalg.api.ndarray.INDArray; /** * A ScaleVertex is used to scale the size of activations of a single layer<br> * For example, ResNet activations can be scaled in repeating blocks to keep variance * under control. * * @author Justin Long (@crockpotveggies) */ public class ScaleVertex extends BaseGraphVertex { private double scaleFactor; public ScaleVertex(ComputationGraph graph, String name, int vertexIndex, double scaleFactor) { this(graph, name, vertexIndex, null, null, scaleFactor); } public ScaleVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices, VertexIndices[] outputVertices, double scaleFactor) { super(graph, name, vertexIndex, inputVertices, outputVertices); this.scaleFactor = scaleFactor; } @Override public boolean hasLayer() { return false; } @Override public boolean isOutputVertex() { return false; } @Override public Layer getLayer() { return null; } @Override public INDArray doForward(boolean training) { if (!canDoForward()) throw new IllegalStateException("Cannot do forward pass: inputs not set (ScaleVertex " + vertexName + " idx " + vertexIndex + ")"); if (inputs.length > 1) throw new IllegalArgumentException( "ScaleVertex (name " + vertexName + " idx " + vertexIndex + ") only supports 1 input."); INDArray prod = inputs[0].dup(); prod.muli(scaleFactor); return prod; } @Override public Pair<Gradient, INDArray[]> doBackward(boolean tbptt) { if (!canDoBackward()) throw new IllegalStateException("Cannot do backward pass: errors not set (ScaleVertex " + vertexName + " idx " + vertexIndex + ")"); return new Pair<>(null, new INDArray[] {epsilon.muli(scaleFactor)}); } @Override public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) { if (backpropGradientsViewArray != null) throw new RuntimeException( "Vertex does not have gradients; gradients view array cannot be set here (ScaleVertex " + vertexName + " idx " + vertexIndex + ")"); } @Override public String toString() { return "ScaleVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",scaleFactor=" + scaleFactor + ")"; } @Override public Pair<INDArray, MaskState> feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState, int minibatchSize) { //No op if (maskArrays == null || maskArrays.length == 0) { return null; } return new Pair<>(maskArrays[0], currentMaskState); } }