package org.deeplearning4j.gradientcheck;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.Updater;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.junit.Test;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.buffer.util.DataTypeUtil;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import java.util.Random;
import static org.junit.Assert.assertTrue;
/**
* Created by Alex on 08/09/2016.
*/
public class LRNGradientCheckTests {
private static final boolean PRINT_RESULTS = true;
private static final boolean RETURN_ON_FIRST_FAILURE = false;
private static final double DEFAULT_EPS = 1e-5;
private static final double DEFAULT_MAX_REL_ERROR = 1e-5;
private static final double DEFAULT_MIN_ABS_ERROR = 1e-9;
static {
DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE);
}
@Test
public void testGradientLRNSimple() {
Nd4j.getRandom().setSeed(12345);
int minibatch = 10;
int depth = 6;
int hw = 5;
int nOut = 4;
INDArray input = Nd4j.rand(new int[] {minibatch, depth, hw, hw});
INDArray labels = Nd4j.zeros(minibatch, nOut);
Random r = new Random(12345);
for (int i = 0; i < minibatch; i++) {
labels.putScalar(i, r.nextInt(nOut), 1.0);
}
MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().learningRate(1.0)
.regularization(false).updater(Updater.NONE).seed(12345L).weightInit(WeightInit.DISTRIBUTION)
.dist(new NormalDistribution(0, 2)).list()
.layer(0, new ConvolutionLayer.Builder().nOut(6).kernelSize(2, 2).stride(1, 1)
.activation(Activation.TANH).build())
.layer(1, new LocalResponseNormalization.Builder().build())
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation(Activation.SOFTMAX).nOut(nOut).build())
.setInputType(InputType.convolutional(hw, hw, depth)).pretrain(false).backprop(true);
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
mln.init();
if (PRINT_RESULTS) {
for (int j = 0; j < mln.getnLayers(); j++)
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
}
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels);
assertTrue(gradOK);
}
}