package org.deeplearning4j.parallelism.factory;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.conf.WorkspaceMode;
import org.deeplearning4j.optimize.api.IterationListener;
import org.deeplearning4j.parallelism.MagicQueue;
import org.deeplearning4j.parallelism.ParallelWrapper;
import org.deeplearning4j.parallelism.trainer.DefaultTrainer;
import org.deeplearning4j.parallelism.trainer.Trainer;
/**
* Creates {@link DefaultTrainer}
* instances for use with {@link ParallelWrapper}
* @author Adam Gibson
*/
public class DefaultTrainerContext implements TrainerContext {
/**
* Initialize the context
*
* @param model
* @param args the arguments to initialize with (maybe null)
*/
@Override
public void init(Model model, Object... args) {
}
/**
* Create a {@link Trainer}
* based on the given parameters
*
* @param threadId the thread id to use for this worker
* @param model the model to start the trainer with
* @param rootDevice the root device id
* @param useMDS whether to use the {@link MagicQueue}
* or not
* @param wrapper the wrapper instance to use with this trainer (this refernece is needed
* for coordination with the {@link ParallelWrapper} 's {@link IterationListener}
* @return the created training instance
*/
@Override
public Trainer create(int threadId, Model model, int rootDevice, boolean useMDS, ParallelWrapper wrapper,
WorkspaceMode mode, int averagingFrequency) {
DefaultTrainer trainer = DefaultTrainer.builder().originalModel(model).replicatedModel(model).threadId(threadId)
.parallelWrapper(wrapper).workspaceMode(mode).useMDS(useMDS).averagingFrequency(averagingFrequency).build();
trainer.setName("DefaultTrainer thread " + threadId);
trainer.setDaemon(true);
return trainer;
}
}